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Abstract

We study several techniques which are well known in the case of Besov and Triebel-
Lizorkin spaces and extend them to spaces with dominating mixed smoothness. We
use the ideas of Triebel to prove three important decomposition theorems. We deal
with so—called atomic, subatomic and wavelet decompositions. All these theorems have
much in common. Roughly speaking, they say that a function f belongs to some
function space (say S;,qA) if, and only if, it can be decomposed as

f(z) = Z Z Ay mym (), convergence in S,
14 m

with coefficients A = {\, 1} in a corresponding sequence space (say s}, ,a).

These decomposition theorems estabilish a very useful connection between function
and sequence spaces. We use them in the study of the decay of entropy numbers of
compact embeddings between two function spaces of dominating mixed smoothness
reducing this problem to the same question on the sequence space level.

The considered scales cover many important specific spaces (Sobolev, Zygmund,
Besov) and we get generalisations of respective assertions of Belinsky, Dinh Dung and
Temlyakov.

AMS Classification: 41A46, 42B35, 42C15, 42C40, 46E35

Keywords and phrases: function spaces, dominating mixed smoothness, local means,
decompositions (atomic, wavelet), compact embeddings, entropy numbers

I Friedrich-Schiller-Universitit Jena, Mathematisches Institut, Ernst Abbe Platz 1-4, D-07737 Jena, Ger-
many, vybiral@minet.uni-jena.de



Contents

1 Function spaces on R? 5
1.1 Notation . . . . . . . . . . e e e 5
1.2 Definitions and basic properties . . . . . . .. .. ... 6

1.2.1 Definitions . . . . . . . . 7
1.2.2 Basicinequalities . . . . . . . . . ... ... o 7
1.2.3 Lifting property . . . . . . . .. 8
1.2.4 Maximal operators . . . . . . . ... 9
1.2.5 Fourier multipliers . . . . . . . .. ... Lo 9
1.2.6 Littlewood-Paley Theory . . . . . . .. ... .. .. ... ... ... 10
1.3 Localmeans . . . . . . . . . . . L 10
1.3.1 The Peetre maximal operator . . . . . ... .. ... ... ...... 11
1.3.2 Helpful lemmas . . . . . ... ... .. 12
1.3.3 Comparison of different Peetre maximal operators . . . . . . . . . .. 15
1.3.4 Boundedness of the Peetre maximal operator . . . . . . .. ... ... 18
1.3.5 Local means characterisation . . . . . . ... .. ... ... ... .. 21

2 Decomposition theorems 24
2.1 Sequence SPACES . . « « ¢ v et e e e e e e e e e e e e 24
2.2 Atomic decomposition . . . . . .. .. 25
2.3 Subatomic decomposition . . . . . .. ... Lo 32
2.4 Wavelet decomposition . . . . . . . ..o Lo 40

241 Duality . . . . . . e 42

3 Entropy numbers - direct results 45
3.1 Notation and definitions . . . . . . . . ... oL oo 45
3.2 Basiclemmas . . . . ... .. ... 48
3.3 Mainvresult . . . . .. . 52

4 Complex interpolation 57
4.1 Abstract background . . . .. ... Lo 57
4.2 Interpolation of sT%a . . . ... ... ... 60
4.3 Interpolation properties of entropy numbers. . . . . . . ... ... L. 63
4.4 Fillingthegaps . . . . . . . . . L 64
4.5 Entropy numbers - conclusion . . . . ... ... Lo o L. 67
4.6 Comparison with known results . . . . .. .. ... ... ... ........ 70



Preface

We study the function spaces with dominating mixed smoothness. First spaces of this type
were defined by S. M. Nikol’skij in [21] and [22]. He introduced the spaces of Sobolev type

+

SiW(R?) = {111 € L,(R),||f1S;W (R2)||—Hf|LH+Han|Lp

av"zf aTH—Tzf
+ || 5z 120 ||+ | Gz 1 20 | < 2o}
0x'|* Oxh? | o
where 1 < p < oo,7; = 0,1,2,...;(: = 1,2). The mixed derivative ;Tlla Tz plays the

dominant part here and gave the name to this class of spaces. The detailed study of spaces
of such type was performed by many authors, for example T. I. Amanov, O. V. Besov,
K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skij, M. K. Potapov and H.—J. Schmeisser. We
refer to [1] for a systematic treatment of this topic. As in the theory of classical Sobolev
spaces an alternative definition in terms of Fourier transform may be given (see (1.8) and
(1.9)). This definition is based on a decomposition

f= Z(‘Pkl ® - Q¢ f)", convergence in S'(R%),

keNd

where {¢g bren, is a decomposition of unity on R known from the theory of classical Besov
spaces and ¢ = @k, ® -+ Q @y,, k = (ki1,...,kq), is a tensor product.

We refer mainly to [26], as far as the Fourier-analytic approach to these spaces is considered.
In Chapter 2 of this book the classical theory of spaces with dominating mixed smoothness
properties is developed. Several types of equivalent quasinorms, embedding and trace theo-
rems and characterisation of these spaces by differences are proved there. One studies also
basic properties of crucial operators on these spaces, namely of lifting and maximal opera-
tors and Fourier multipliers. We recall some facts from this book, which shall be useful later
on, in Chapter 1. In contrary to [26], we do not restrict the dimension of the underlying
Euclidean space to d = 2, hence we state these results formulated for general dimension
d > 2. As mentioned in [26], this generalisation is obvious.

The second Chapter is devoted to local means, atomic, subatomic and wavelet decomposi-
tions of spaces with dominating mixed smoothness. We state the result for both Besov and
Triebel-Lizorkin spaces but in some cases we give the proofs only for the Triebel-Lizorkin
scale. The proofs for Besov-type spaces are omitted as they are very similar to the proofs
presented here. First of all, we characterise this class of spaces by so-called local means. See
Theorem 1.25 for details. This fundamental characterisation serves us as a basis for all three
decomposition techniques.

By atomic decomposition of a function f one usually means a decomposition of a type

= ZZ Avm@ym (), convergence in  S'(R%),

where a,,, are some simple building blocks, called atoms, and A, ,, are complex numbers.
A function f then belongs to some function space if and only if the sequence of coefficients
{A\vm }v,m belongs to some sequence space. For the exact formulation see Theorem 2.4. Let
us mention that the atoms are specified only implicitly - a function a is an atom if and only
if it satisfies some qualitative properties (see Definition 2.3).
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By a subatomic decomposition we mean a decomposition of a type

ZZZA (Bat)ym (), convergence in S’(Rd),

where (Bqu),m(z) are so-called quarks and A2 are complex numbers. A quark is a special
type of atom defined explicitly by (2.36). Hence the basic building blocks, quarks, are much
more specific in this kind of decomposition. The price one has to pay for that is a more
complicated connection between f and {\? }. It is described in detail in Theorem 2.6. In
this sense each of these decompositions has its advantages and disadvantages. But all of
them have something in common : they establish a connection between function spaces and
sequence spaces. As the sequence spaces are simpler to deal with, it turns out that this
connection is very useful in many situations (embeddings, traces, entropy numbers, ...). On
this place we have to mention another important way how to switch from function spaces
to sequence spaces — namely the so-called p-transform of M. Frazier and B. Jawerth. We
refer to [15] and references given there for details.

The classical theory of atomic decompositions of Besov and Triebel-Lizorkin spaces was
developed mainly in the works M. Frazier and B. Jawerth ([12], [13]) and H. Triebel ([33],
[34]). The subatomic decomposition of these spaces is due to H. Triebel ([35], [37]). We
follow their ideas and prove similar decomposition theorems for spaces with dominating
mixed derivatives. This is done in Chapter 2 and is one of the main results of this work.

The last decomposition technique developed here is the wavelet decomposition. In that case
a class of compactly supported wavelets is used as the building blocks, see Theorems 2.10
and 2.11 for precise formulation. The main advantage of the wavelet decomposition is the
uniqueness of the series obtained. The price paid for that is the limited smoothness of the
compactly supported wavelets.

In the third chapter we study the entropy numbers of embeddings of sequence spaces asso-
ciated with the function spaces with dominating mixed smoothness. The notion of entropy
numbers has its roots in the study of metric entropy done in 1930’s by Kolmogorov. Given
a bounded linear operator 1" between two quasi-Banach spaces A and B (T € L(A, B)), the
quantity ex(7T),k € N, denotes, roughly speaking, the smallest radius ¢ > 0 such that the
image of the unit ball of A under the operator 7 may be covered by 2*¥~! balls in B of radius
€. The sequence {ex(T)}32, tends to zero if, and only if, the operator 7 is compact. The
decay of this sequence is then understood as a measure of compactness of 7. The crucial
property of entropy numbers was observed by Carl [6], who proved that the entropy numbers
of a compact operator T' € L(A, A) dominate in some sense its eigenvalues. In general, we
use the method of [10] in this part.

We use the decomposition techniques to reduce this question to the sequence space level.
Namely, it turns out that

ex(id : Syl 5, A(Q) = Sp2 1, A(Q)) & ex(id : 57} ,a(Q) = 573 ,a()), (1)
where the constants of equivalence do not depend on k£ € N. So, in the third chapter we study
mainly the entropy numbers of embeddings of sequence spaces. We restrict ourselves to the
case T = (r1,...,71) € R? and 7y = (r3,...,79) € R% Unlike in the case of the classical
Besov and Triebel-Lizorkin spaces, it turns out that the estimates of entropy numbers depend
on the second, fine, summability parameter q. Unfortunately, the method used here gives



the optimal answer only under some restriction on the parameters involved. We prove that
the embeddings appearing in (1) is compact if, and only if,

1 1
azrl—rg—max<———,0>>0. (2)
b1 P2

But the direct method gives the estimates for (1) only for
1 1 1 1

a> — — — Y A—
mln(plaanQI) y41 P2 maX(pmfh)

We overcome this obstacle in Chapter 4 by the use of a complex interpolation method as
developed by O. Mendez and M. Mitrea in [20]. Our final result may be summarised in the
following way.

Under condition (2),

1

enlid: ST A(Q) — ST A(Q)) > ck™ " (log k)¢ DT g )

P1,q1 D2,92

Ifrl—rg—qil+qi2>0then

exlid : St A(Q) — T2, A(Q)) < k™ (log k) VT e man),

P1,q1 P2,q92

If r; —ry — - + L <0 then for every ¢ > 0 there is a constant ¢, > 0 such that
q1 q2

ex(id : SZquA(Q) — S;;(DA(Q)) <c k™ (logk)®.
(See Theorem 4.11 for exact formulation). Finally, we compare results obtained by this
method with estimates on entropy numbers of embeddings of function spaces with dominat-
ing mixed smoothness obtained by Belinsky [4], Dinh Dung [8] and Temlyakov [30].

I would like to thank to Prof. Schmeisser and Prof. Sickel for supervising my research and
for many valuable discussions.

1 Function spaces on R?

Our aim in this Chapter is to recall the known aspects of the theory of function spaces with
dominating mixed smoothness S7 B(R?) and ST F(R?). First of all, we introduce some
basic notation which we shall need later on. Then we quote some definitions and theorems
stated in [26] which are crucial in the sequel. In the last part we develop the so-called local
mean characterisation of the spaces S} B(R?) and Sj F(R?).

1.1 Notation

As usual, R? denotes the d—dimensional real Euclidean space, N the collection of all natural
numbers and Ny = N U {0}. The letter Z stands for the set of all integer numbers and C
denotes the plain of complex numbers.

We denote the points of the underlying Euclidean space by z,v, z,.... Their components
are numbered from 1 to d, hence x = (z1,...,x4). If z,y € R¢, we write z > y if, and only if,
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x; > vy; for every + = 1,...,d. Similarly, we define the relations z > y,z < y,z < y. Finally,
in slight abuse of notation, we write z > A forz e RL, A e Rifa; > N\ i=1,...,d.

The d—dimensional vector indices will be denoted by &, 1,77, ... and their components are
also numbered, hence k = (ki,...,kq). When a = (a1,...,q4) € N¢ is a multi-index, we
denote its length by |a| = ijl ;. The derivatives D* = 01/ /929" - - - 0z5¢ have the usual
distributive meaning as well as the symbol 2% = z{* - - - 3.

Let S(R?) be the Schwartz space of all complex-valued rapidly decreasing infinitely differ-
entiable functions on R?. We denote the d—dimensional Fourier transform of a function
¢ € S(R?) by Fo, F(p) or by ¢. Its inverse is denoted by F lo, F 1(¢) or ¢'. Both F
and F ! are extended to the dual Schwartz space S'(R?) in the usual way. Sometimes, we
need to distinguish between the d—dimensional and one-dimensional Fourier transform. In
that case we denote the later by F; or ! and its inverse by F;* or V1. We point out that
for functions ¢(x) = @1(21) -+ - pa(xq) = (1 ® --- @ @q)(z) the following formula connects
F with Fl

(Fe)(€) = (Frp)) (&) - (Frpa) (€a) = (Frpr) ® -+ ® (Fipa))(€), E€RL. (L)

Let 0 < p,q < co. Having a sequence of complex-valued functions { fE}EeNg on R¢, we put

el = (2 Il La@))) ™ = (3 ( / )™ )

and

~(L(z \fk(x)\q)p/qu) T

keNg

(X i) L@

keNd

el Lt = \

appropriately modified when p and/or ¢ = oc.

We denote a; = max(a,0) for a real number a € R. Furthermore, let

Opg = (qu and o, = (%—1)+ (1.4)

for every 0 < p < oo and 0 < g < o0.

All unimportant constants are denoted by c¢. So, the meaning of the letter ¢ may change
from one occurrence to another. By a; ~ by we mean that there are two constants ¢y, co > 0
such that ciar < by < ¢y for every admissible k.

1.2 Definitions and basic properties

In this section we define the function spaces with dominating mixed smoothness on R? and
recall their basic properties as they are described in [26]. We quote the results for general
dimension d of the underlying space R?, although they were stated and proved only for d = 2
in [26]. But, as mentioned there, this generalisation is rather obvious.



1.2.1 Definitions

Definition 1.1. Let ®(R) be the collection of all systems {(;(t)}22, C S(R) such that

supp o C {t e R: |t| <2} (1.5)
suppp; C{t € R: 271 < || <29F1} if j=1,2,...;
for every a € Ny there exists a positive constant ¢, such that
21% D%p;i(t)| < cq forall j=0,1,2,... and all t € R, (1.6)
and -
ngj(t) =1 forevery teR (1.7)
§=0

For k = (ki,...,kqs) € N and = = (z4,...,24) € R? we define pz(2) = ¢x, (71) + - - @, (Ta).-
Using this kind of notation, we can give a definition of spaces S} B(R?) and S} ,F(R?).

Definition 1.2. Let 7= (ry,...,74) € R%, 0 < ¢ < 00 and ¢ = {¢;}%2, € ®(R).
(i) Let 0 < p < co. Then S;  B(R?) is the collection of all f € S'(R?) such that

_ - A / T A
17157, BE)N, = (3 25l f) 1L, @) = 17 (o) 16(L) (1L8)
keNg

is finite.
(ii) Let 0 < p < co. Then SJ F(R?) is the collection of all f € S'(R?) such that

_ i A 1/q i A
17155 F @)l = || (D2 125 (0r ) O1F) T IL®Y)|| = 11257 () 1L (19)
keNd
is finite.
Remark 1.3. According to (1.7), we have
Z orp(x) = (Z gpkl(:vl)> (Z gakd(:vd)) =1 forallz = (zy,...,2q4) € R%
keNg k1=0 kg=0

In this sense, {¢g}zen is also a decomposition of unity, in this case on R.

Remark 1.4. The symbol S] | A(R?) stays, as usual, for 57 B(R?) and 5] F(R?) respectively.

1.2.2 Basic inequalities

One of the most important questions in the theory of spaces S;’qA(]Rd) is the independence
of Definition 1.2 on the system ¢ = {SOE}EeNg- The answer is given by



Theorem 1.5. Let {©;}52, {¢;}32, € ®(R). Let 7 = (r1,...,74) €R? and 0 < ¢ < 0.

(i) Let 0 < p < co. Then ||f|S; B(R*)||, and ||f|S] ,B(R)||y are equivalent quasinorms.
Furthermore, S \B(R?) is a quasi-Banach space (Banach space if min(p,q) > 1) and

SR c S; B(R?) C S'(RY).

(ii) Let 0 < p < oo. Then ||f|Sy F(R?)||, and ||f|S} ,F(R?)||y are equivalent quasinorms.
Furthermore, SPF’qF(]Rd) is a quasi-Banach space (Banach space if min(p, q) > 1) and

S(R?) c S; F(R?) C S'(RY).

For the proof in the case d = 2, see [26, pages 87, 93]. So, we may write ||f|S] ,B(R?)|| and
|£15] ,F (R*)|| without any index ¢ or ¢ meaning one of these equivalent quasinorms.

Remark 1.6. The reader noticed that we did not define the spaces S F(R?) for p = oo.
The reason is very similar to the case of classical Triebel-Lizorkin spaces. If one extends
Definition 1.2 to the case p = 0o, which is actually possible, than there is no counterpart of
Theorem 1.5. In particular, these spaces do depend on the choice of the system {¢,} € ®(R).

We recall also the following version of the famous Nikol’skij inequality which is due to
B. Stéckert [29] and A. P. Uninskij [39).

Theorem 1.7. (Nikol’skij inequality) Let 0 < p < u < oo and a = (ay,...,qq) € Nd. Let
b= (b1, bs) >0 and Qg = [=by,b1] X --- X [~bg,bs] C R*. Then there exists a positive
constant ¢, which is independent of b, such that

1 1
a1ty =y ag+

1D fILL(RY)]| < cby by TS ILy(RY)

holds for every f € S'(R%) N L,(R%) with supp f C Qy.

1.2.3 Lifting property

As in the case of classical Besov and Triebel-Lizorkin spaces, we can define a lifting operator.

Definition 1.8. Let p = (p1,. .., pa) € R?. Then we define the so-called lifting operator I;
by
Lf=F Q1+ (1 + )™ Ff, [eS R (1.10)
Theorem 1.9. Let 0 < ¢ < oo, p,7 € R?.
(i) Let 0 < p < oo. Then I; maps S, ,B(R?) isomorphically onto S}, ?B(R*) and
|L£1S5 PB(RY)|| is an equivalent quasinorm in S, B(R?).
(ii) Let 0 < p < co. Then Iz maps S, ,F(R?) isomorphically onto S} PF(R*) and
|1 L:£1S5 P F(RY)|| is an equivalent quasinorm in S}, F(R?).

The proof may be again found in [26, page 98].



1.2.4 Maximal operators

It has been observed throughout many decades that maximal operators (and their bound-
edness on appropriate function spaces) play a crucial role in harmonic analysis and function
spaces theory. Our constructions given later are based on the Hardy-Littlewood maximal
operator and the maximal operator of Peetre. Now we give the definition of the first one.
For the definition of the latter one, see Section 1.3.1.

For every locally integrable function f(z) € L*(R%) we define the classical Hardy-Littlewood
maximal operator

1 d
(MF)(w) = sup o /Q f)ldy, zeRY (1.11)

where the supremum is taken over all cubes () centred at x with sides parallel with coordinate
axes. The symbol |@| denotes the Lebesgue mass of the cube @. The famous Hardy-
Littlewood inequality tells that for every p with 1 < p < oo there is a ¢ such that

IMFIL, R < cllf LR, f € Ly(RY). (1.12)

The following theorem is a vector-valued generalisation of (1.12) and is due to C. Fefferman
and E. M. Stein [11].

Theorem 1.10. Let 1 <p < oo and 1 < g < oo. There exists a constant ¢ such that

||MfE|Lp(€q)|| < C||fE|Lp(£q)|| (1.13)

holds for all sequences {fE}EeNg of locally Lebesque-integrable functions on R?.

To reflect the tensor structure of the decomposition of unity ¢ = {5} used in Definition
1.2, we consider following ”directional” maximal operators. We define

T1+s
(M, ) (z) = sup — F (2o, 2g)|dE (1.14)

s>0 28 r1—S

and in a similar way for other variables. We denote the composition of these operators by
M = Mgo---o M. The following maximal theorem is due to R. J. Bagby [2] (actually, it
is a special case of more general theorem given there).

Theorem 1.11. Let 1 <p < oo and 1 < g < oo. There exists a constant ¢ such that
M frl Ly (€| < || felLp(€)ll, i=1,....d (1.15)

holds for all sequences {fE}EeNg C Ly(¢,) of functions on RY.
Iteration of this theorem shows that the estimate (1.15) holds also for the operator M.

1.2.5 Fourier multipliers

Let Q = {QE}EeNg be the sequence of compact subsets of R? with following properties

QE: {.I (- Rd : |$1‘ < al,kl,...,|xd\ < ad,kd} with Al ks -y Ad kg > 0.



Theorem 1.12. Let 0 < p < o0, 0 < ¢ < o0 and T = (r1,...,7q) > m—i—%. Let

Q= {QE}EeNgaal,ku .., aq, > 0 be the same sequences as above. Then there is a positive
constant ¢ such that

(esf)" | Lo(E)]] < e(5up lleg(ari,- - aur, ) ST P R)]) - 1l Ly (6
keNd

holds for all systems {fz} € L, (£q) with supp fz C Qi and all systems {oz} C S5, F(R?).

Remark 1.13. The proof may be found in [26, page 77].

1.2.6 Littlewood-Paley Theory

We state also a theorem of Littlewood-Paley type for spaces with dominating mixed smooth-
ness. But first we define the Sobolev spaces with dominating mixed smoothness. This is the
very direct generalisation of the definition of Nikol’skij given in the Preface.

Definition 1.14. Let 1 <p < oo and 7 = (ry,...,r4) € N.. We put

S;W(RY) = {f|f € LR, [|/ISWRY = Y |ID*f|Ly(RY)]| < oo}

0<a<F
Clearly, we have SOW(R?) = L,(R?). The connection between S;W (R?) and S F(R?) is
then given by
Theorem 1.15. Let 1 <p < oo and T = (ry,...,74) € N&. Then
S;W(RY) = S; ,F(RY)
where the corresponding norms are equivalent to each other.

Remark 1.16. See [26, page 104] for details.

1.3 Local means

In this part we present the main technical tool, namely, we characterise the spaces S;  A(R?)
by the so—called local means. In general, we follow the method presented by Rychkov [25].
Recall, that the spaces S} A(R?) were introduced by Definition 1.2 and, according to The-
orem 1.5, we know that this definition does not depend on the choice of the decomposition
of unity {¢;}52, C ®(R). Hence we may fix some specific system {¢;}52, for the rest of our
work.

We fix ¢(z) € S(R) with

DN o

4
plz)y=1 if |z| < 3 and @(x)=0 if |z|>

We put @o = ¢, p1(z) = ¢(3) — ¢(x) and
pi(z) = cp1(2_j+1x), reR,jeN.

One verifies easily that (1.5)—(1.7) holds.
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1.3.1 The Peetre maximal operator

Next we discuss the analogy of the Peetre maximal operator introduced in [23]. The con-
struction of Peetre adapted to the case of function spaces with dominating mixed smoothness
assigns to every system {@/JE}EeNg C S(R?), to every distribution f € S'(R¢) and to every
vector @ > 0 the following quantities

b [(e)" (v).
yer TTi, (1 + 25 (ys — @) |)
As ¥, € S(R?) for every k € N¢ then v f is well defined for every f € S'(R%) and, according

to the Theorem of Paley—Wiener—Schwartz (see [32] and references given there for details),
(Yxf)Y is an analytic function. In particular, (¢ f)"(y) makes sense pointwise.

reRY, keNL (1.16)

Unfortunately, as we are interested also in non—smooth kernels (for details, see Section 2.4),
we need to consider also kernels 1z ¢ S(R). We weaken in a natural way the definition of
the Schwartz space S(R¢) and obtain the class of spaces X°(R?) defined for every S € N¢
by

XS(]Rd) {p € SSW(Rd) . ||90|X§(Rd)” < oo},
X @ = (X D) ) P)

0<a,6<5

We denote w(z) = [[2, (1 + 23 )S‘f and observe that ¢ € X5(R?) if, and only if, w - D%p €
Ly(RY) for every 0 < a < S. This is obviously equivalent to D%(w - ¢) € LQ(Rd) for every
0 < @ < S, which may be written as w - ¢ € SSW (R%). Hence

¢ € X5(RY) if, and only if, w-¢ € SSW(RY).
This allows us to characterise the dual of X5(R?%). We get
¥ € (X5(RY) if, and only if, w -9 € (SyW(RY)) = Sy 5 F(RY).
As a trivial consequence of the embedding (S € N¢)
X5(RY) < SSW(RY) < S5.2B(RY)
we get for every K € N¢ and every S > K + 1
X3(RY) — CK(RY).
Having now a function ¥z € X5(R%) and some distribution f € (X5(R%)), we write

(f +0y) /f Hy—2)dz = f(p(y— ), yeR

So, given a system {¢g}zens C X3(R%) for some S € N¢, we denote ¥y, = ¢, € X5(R%) and
define in analogy with (1.16) for every f e (X5 (R%))’

PV (2) = su (Y5 ) ()| seR. FenN
(U5 f)a(z) yeRgHZ 01 2 (s - 2] eR, keN. (1.17)

Furthermore, for S = oo, we put X5(R?%) = S(R?).
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1.3.2 Helpful lemmas

We split the proof of the local-mean characteristics of Besov and Triebel-Lizorkin spaces and
give in this subsection the technical lemmas. This will allow us a straightforward proof later
on. The lemmas originate in [25] and we quote them only with some minor modifications,
mainly forced by the tensor structure of function spaces with dominated mixed smoothness.

We start with lemma describing the use of the so—called moment conditions.

Lemma 1.17. Let K € Ny and g,h € X¥*2(R). Furthermore, let M > —1, M < K be an
integer and
(D%9)(0) =0, 0<a< M.

Then for every N € Ny with 0 < N < K there is a constant Cy such that

sup|(gs * h)(2)|(1 + |2|) < Cyd™T, 0 <b< 1, (1.18)
zZER

where gy(t) = b tg(t/b).
Proof. Using the elementary properties of the Fourier transform we get

a A
LHS(1.18) < ¢ max [[D[(gy * h)"]|L1(R)]|

By Leibnitz formula,

[DO)ROIE) < e Y YI(D9uE)DPh)(E)], EeR (1.19)

0<p<a
As g € CM*(R), we may use the Taylor formula and get
(D?g)(b€)| < clbg™—P*1, 0< <M (1.20)

for [b¢| < 1. But, as D?§ € C(R), (1.20) holds for all b,£ € R. Hence, for 0 < 8 < M, we
get . .
V°|(D?9)(6€)(D*Ph) ()] < cb™ (D Ph)(€)] - [€| M+, g eR (1.21)

If M <B<Kand0<b< 1, we have b < bM+! which, together with D?§ € C(R), gives
(1.21) for all 0 < B < K.

We put (1.21) into (1.19) and obtain (1.18). O
Furthermore, we shall need the following convolution inequality.

Lemma 1.18. Let 0 < p,q < oo, 6 > 0. Let {QE}EeNg be a sequence of nonnegative
measurable functions on R? and let

Gy(x) = Z 2"7’E|5gg(a:), reRY, veN, (1.22)
keNg

Then there is some constant C = C(p, q,0) such that
1GEle(Lp)] < Cllgeltq(Ly)] (1.23)
||GE‘LP(£¢1)|| < CHQE‘Lp(gq)H- (1.24)

12



Proof. Step 1.
We start with the proof of (1.23). If p > 1, we get by triangle inequality

1Go| LRI < Y 2770 gy| L, (RY)]|, 7 € Nj.
keNg
When ¢ < 1, we use the embedding ¢, — ¢; and get
—lv—k 1
[Golta(Lp)I| < (3 37 2717700 g 1, (R 7).
veNg keNg
Interchanging the order of summation, we get (1.23) with C' = Cy = (3 _zcz4 9~ [Kldayi/a,
If ¢ > 1, we apply Young’s inequality. We denote
p=2"M0 F ezl (1.25)
¥e = llgz| Lp(RY)||, k€N¢ and ;=0 for keZ%\N.
Then we get
1GH LR < (A 7)(7), 7€N
and Young’s convolution inequality gives
A s y[€q ]| < TIA[] - [v]€g]]-

This proves (1.23) with C = Cy = ||A|41]].
If p <1, we use the £, — ¢; embedding and get

GE(z)dzx < Z 2_”_“7’/ gr(z)dz
R4

d I
K keNg

For g/p < 1 this implies

D GHL, R < Y D 277 gL (R

veNg veNg keNg
Now we interchange again the order of summation and take the 1/¢ power. This proves
(1.23) with C = C.

Finally, if ¢/p > 1, we use again Young’s inequality, with A\? and 7? instead of A and . This
gives

NGollg(Lp) [P < [INPIEL]] - (177 gl
which proves (1.23) with C = ||A[4,]].
Step 2.

Next we turn to (1.24). This is a trivial consequence of the pointwise inequality
1Go(2)[4]] < Cllgs()[6,]], =€ RY, (1.26)

with C independent of 2z € R?.

To prove (1.26), just use the ¢, — ¢; embedding for ¢ < 1 and Young’s inequality for ¢ > 1.
We do not give details, which are very similar to the calculation in Step 1. O

13



As we do not want to exclude the case of arbitrary smooth functions, we use the following
notation. We say that the vector N = oo if and only if N; = oo for all ¢ = 1,...,d. The
symbol N € N¢ U {oc} then admits N = oc or N to be a vector of nonnegative integers.

Lemma 1.19. Let 0 < r <1, and let {yr}yeng, {Bolpena be two sequences taking values in
(0,00). Assume that, for some N e Nd,

0

v =02"Y), [7] = oco. (1.27)
Furthermore, we assume that there s N'e N¢ U {oo} with N > N such that

W< Oy 2" VB, PEN], Oy <o, (1.28)
keNd

holds for every 0 < N < N if N s finite or for every N € N¢ if N' = .
Then, for the same set of N,

1W< Cx Y 278, TEN, (1.29)
keNg

with the same constants Cy.

Proof. Put

By (1.28),

Pox <Cxsup 3 29 G0y,
leNd
=Cysup > 2
leNd+k
=Cn D2 By (1.30)
leNg
<CLE D 2 VB

leNd

When I'; i < oo, we finish the proof by

<D< Oy Y2 (1.31)

2|

T
v,

Nkt

g

From (1.27), I';  is finite for all N<N<N (or for all N <NifN = o0). As the
right—hand side of (1.29) decreases when N increases in any coordinate, this proves (1.29)

14



also for all N ¥ N° with the constant Cy-, where N, = max(IN;, N;). Take now any

1 7

N # N’ and apply (1.29) with Cw+ instead of Cx to get

_ kN, _
FU,N = sup 2 Ve+v
keNg

(k4N 1/r
< sup (CN* Z 2~ (k40 Tﬁi+%+v)
RN leny

- (S

leNd

which is finite whenever the right-hand side of (1.29) is finite (otherwise there is nothing
to prove). So, even in this case, we may apply (1.30) and (1.31) and finish the proof of the
lemma. O

1.3.3 Comparison of different Peetre maximal operators

In this subsection we present one inequality between different Peetre maximal operators.
This inequality (together with the boundedness of Peetre maximal operator) forms the basis
for our characterisation of S;qA(Rd) through local means.

Because of the limited smoothness of our kernel functions (discussed in detail in section 2.4),
we cannot expect to get such an inequality for all f € S'(R%).

We start with (given) functions v, %, i = 1,...,d defined on R and denote

Pit) =vi(277t), teR, j=23,...,

d
vp(e) = [ i (@), z€RLEeN, (1.32)
i=1
‘IIE == ’&E’ E € Ng
To (also given) functions ¢, ¢,7 = 1,...,d we associate ¢ and ®; in the same way. Fur-

thermore, we suppose that v, ¢z € X5(R?) for some S € Ng.

Using this notation we may state the main result of this section.

Theorem 1.20. Leta,7 € RE, Re N¢,0 < p,q < oo witha >0 and7 < R+1. IfS > R is
large enough,

DH(0)=0, i=1,....d, 1=01,.. R (1.33)
and, for everyi=1,...,d and some ¢ > 0,
65(t)] >0 on {teR:|t| <e} (1.34)
6i(6)] >0 on {teR:e/2<t| <2} (1.35)
then
1257 (U )al € (L) < 2% (@3 F)alo(Ly)| (1.36)
1257 (W al L8| < el]2°7 (@7 F)al Ly )] (1.37)

for all f € (X5(RY))".
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Proof. Step 1. — formal calculations.
It follows from (1.34) and (1.35) that there exist functions {A\;}22, 4 = 1,...,d with

§=0’
Y ON(git) =1, teR, (1.38)
7=0
Ni(t) =X (279"), teR, jeN (1.39)

supp Ay C {t eR: [t| <e} and suppA;C{teR:2 % < [t| <2}, jeN (1.40)
Now we define, as usually, Ag(z) = AL (1) - Af (zq) for every k € N§. From (1.38) we
obtain

Y Nl@)pp(z) =1, zeR™
keNg

Finally, we denote Ay = S\E,E € NZ. This gives us the following identities

F=) Agxpxf, U f=> UpxAgxOpxf, VeN. (1.41)
keNd keNg
We have
(U5 % Ag* g ) (y)] < /Rd |(W5* Ag) (2)] - [(PF = f)(y — 2)|dz
d
< (®%f)aly) g (T Ap)(2)| TT (1 + 252 |%)dz (1.42)
=1
d
= ((I)%f)a(y)lﬁﬁ = ((I)%f)a(y) H Lk;,
=1
where

L = / (T % AL ) (z0)| (1 + 1282 %) dz
R
We claim that by Lemma 1.17,

[ <cC {Q(ki—ui)(Ri+1), if k; <
vik; >

Pk atnl ) if k> (1.43)

We namely have (for 1 < k; < v;) with the change of variables 2%iz; — z;

1 7 % a;
Ly, = 5/11{\(‘1@_;% * A1(+/2))(2)| (1 + |2i]*)dz

< e sup [(W],_y, * AT (-/2))(20)[ (1 + |z]%+2) < e 2t
zZ€R

when S; are chosen sufficiently large.

Analogously, for 1 < v; < k; with the change of variables 2¥iz; — 2;

Ly, < 2070 / (5 Ak, ) (20)[(1+ [2:]*)dz
R

S c 2(V¢—ki)(—a¢—|—M—|—1) ,
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where M may be taken as large as S; allows. Taking M > 2a; + |r;| (which is possible for
S; large enough), we get (1.43). This covers the cases where v;, k; > 1,1; # k;. The cases
ki=v; > 1, k; >v; =0 and y; > k; = 0 can be treated separately in the similar way. The
needed moment conditions are always satisfied by (1.33) or (1.40), respectively. The case
k; = v; = 0 is covered by the constant C' in (1.43).

Next, we point out that

(®5f)a(y)

d
() TT(1 + 125 (s — vi)|*)
=1

d

< c(@5f)alz) [T+ 127 (i — y3)|*) max(1, 2tk —2))

1=1

We put this into (1.42) and use (1.43)

(W + Ay g+ £)(y)]

d

< (@2 f)al@) [ ] Luik, max(1, 2ki7+0e)

up — ” o
y€ERd Hi:1(1+|2 (@i —ya)|%) i=1

C((I)%f)ﬁ( )H ovi—ki)(|ri|+1) if k; > v;.

=1

d {Q(k-—uq;)(RH‘l) it ki <y

This inequality, together with (1.41) and (1.42), gives for

the estimate

ﬁ?(\ll f

d=min{l,R;+1—r;;i=1,...,d} >0

)<c Y 2 kTR (@t f)(2), TeEN], zeR.
keNd

Lemma 1.18 now gives immediately the desired result.

Step 2. — theoretical background.

In the Step 1 we did not took care about problems caused by limited smoothness of functions

;, ¢§- not to disturb the elegant calculation done there. Nevertheless, to complete the proof,
we have to fill some gaps. We go through the proof of the Step 1 once more and discuss the
theoretical aspects of the calculation.

e Functions /\2-

By the choice X(t) =

©;(3L)/5(t) we ensure (1.38)-(1.40). The functions ¢;, j € Ny,

were fixed in the beginning of Section 1.3. And by conditions (1.34) and (1.35) we get

Ap € X5(RY).

e Identities (1.41)

First, we point out that the expression Ay * ®; x f is well defined for every k€ Nd.

As the function A\, =

AY has compact support, we have Ag * & = (\zop)" € X5(R?).

The same holds for ¥y * Ay * ®p.
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Next we prove the convergence of both sums in (1.41) for every f € (X3(R%))" and
every 7 € N¢ in (X®(R?))". By the duality arguments, it is enough to prove that

> odgdpn — Pou, 7 EN,

keNd

converges in X5(R¢%) for every € X5(R?). This follows from (1.38) and (1.40).

Finally, to come over from (1.41) to (1.42), we have to ensure that (1.41) converges
also pointwise. Better said, we need to prove

(Tox W) < D (T Agx D+ f)(y)] (1.44)

keNd

for all 7 € Nd and almost all y € R?.
Fix 7 € N¢ and let fz(y) = (¥ * A * &7 % f)(y). Then we know from (1.42) that

)| < (@Lf)ay) g, v € R

By (1.43) (and by Hélder’s inequality for ¢ > 1)

D L R < €257 (@5 Falte (L)

keNd

So, whenever the right-hand side of (1.36) is finite, we obtain the L,—convergence of
the series ZEeNg | fz|. Hence, this series converges in the Lebesgue measure as well and
therefore also pointwise almost everywhere. We recommend [19] as far as several types

of convergence of sequences of functions are concerned. So, whenever the right hand
side of (1.36) is finite, we get (1.44).

When the right-hand side in (1.37) is finite, we use

1257 (B )albmaxtra) (L) | < €l|27(@5)al L (£)

and apply the same arguments as above.

O

Remark 1.21. The conditions (1.33) are usually called moment conditions while (1.34) and
(1.35) are the so-called Tauberian conditions.

1.3.4 Boundedness of the Peetre maximal operator

In this subsection we present a theorem describing the boundedness of Peetre maximal oper-
ator in the framework of weighted L,(¢,) and ¢,(L,) spaces. We use the notation explained
in the beginning of section 1.3.3. Especially, we still suppose that the functions v/, ke N,
belong to the space X¥(R?), where the vector S will be specified later on. Our main result
now reads as

18



Theorem 1.22. Let a,7 € R?,0 < p,q < co. Let for everyi=1,...,d

We®)] >0 on {teR:|t|<e} (1.45)
i) >0 on {teR:g/2< |t <2} (1.46)
(i) Ifa > % and S > 0 is large enough then
127 (W5 Falta ()| < €l|257 (T % ) 1g(Ly)]] (1.47)
holds for all f € (X5—%~1(R%))".
(ii) Ifa > m and S > 0 is large enough then
1257 (U5 )al L (£) | < el |27 (U % £) Ly ()| (1.48)
holds for all f € (X5~ (R?))".

Proof. Tn analogy to (1.38)—(1.40) we find functions {\;}22,i =1,...,d with (1.39), (1.40)
and

S XN(@i) =1, teR (1.49)
=0
Instead of (1.41) we now get the identity
f = Z AE * \I/E % f
keNd

A dilation ¢ — 27%¢ in (1.49) leads to

Uy * f = ZAE,v*‘I’E,v*‘I’V*fa veN, (1.50)
keNd

where

Mga(€) = DR@ 7O = 27AK(2%), Fpe N

W}, is defined similarly. We recall that 27§ = (21, ..., 2%¢,). Hence, for k>1,7eN,
we obtain Wy, = Wi, .. To simplify the notation, we point out that

V(277 ) s (2) = UE,V(*Z')%+V($)’ kv € N,
where
d .
O-E,ﬁ(x) = H Ulzci,ui (:I:Z)a
i=1

R wh (2 ey) i ki =0

Hence we may rewrite (1.50) as

Upk f= Agp*05,%Upxf, 7EN. (1.51)
keNd
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By Lemma 1.17, the estimate
9 kN
TTi, (1 + [24524])
holds for k,7 € N¢ with any N < S — 2. The last estimate, together with (1.51), gives

‘(AEJ * &E,D) (2)] < CNQM

k-N

(¥ )y \<<72"§ju/ T By e DRl (052)

Fix now any s € (0,1]. Divide both sides of (1.52) by [T, (1 4 [2“(z; — v:)|%), take the
supremum over y € R? and apply following inequalities

(L4127 (ys = 20) [*) (1 + [2% (s = ) |) = (L + |27 (s = 20)|*),

(Ves5 * (2] < (Vg * 1)) (U5, )alz) ' H(1+ |25 (i — 2) %),

(4 25 (s — z)[*) ok
(1 + (27 (i — zz)\%) (1 + [ 2k (m; — 2)|@)*

Finally, we get

2lk+71 | (‘IJE-W NEII°
o TILL (0 259, — 20

( < cx Z 2k a—N— 1) \I[;;_H,f) (x)l—s

keNg

I

and apply Lemma 1.19 with

27(Ty + f)(2))°
re [Tims (14 |24 (23 — 24)|)?
N =S—-a-1land N' giving the order of the distribution f, which is finite for S = oo and
smaller than S if S is finite.
By Lemma 1.19, we obtain for every N < S—a—1, 7 € R and 7 € N¢

2| (T, + ) (2)1°

[T (1 + 2kt — 2;)[as)s

Vo = (\Ij;f)a(x)a 57 = dZ, Ve Ng:

(T3 f)alz)® < Cx Y 27k 0 dz. (1.53)
Rd

keNg

We point out that (1.53) holds for s > 1 as well with much simpler proof. In that case, we
take (1.52) with @ + 1 instead of @, divide by H (T +12%(z; — y;)|*) and apply Holder’s
inequality for series and 1ntegrals

We now choose s > 0 with .- < s <p (or a% < s < min(p,q), respectively) for every
1 =1,...,d. Then the functlon

1
[T (1 + Jaif)ess

and by the majorant property of the Hardy-Littlewood maximal operator M (see [28, Chap-
ter 2]) it follows

Ll(Rd):

(¥ P< O 2N M (W x fI0) (@), (1.54)

keNg
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We choose N > 0 such that N > —7 and denote

gp(x) = 257 M (| T % f1°) ().
Then we get from (1.54)
Gio(w) = 277 (U} fla(x)* < Cip Y 2 F N T ge(ar)
k>

Hence, for 0 < § < min{N; +r;,i =1,...,d}, we may apply Lemma (1.18) with Ly/s(¢4/5)
and £g/5(Ly/s) norm respectively. This results into

1257 (W F)a(@) [€g/s (L) || < |28 D (| % £17) () |€ss(Lpys)| (1.55)
and
12572 (U5 £ )a(@) [ L (Lays) || < el |28 DL\ £1°)(2) | Lyys by . (1.56)

In the first case, we rewrite the left-hand side of (1.55) and use the classical Hardy—
Littlewood Theorem (see (1.12) for details, we recall that s < p),

1257 (0 f)a() g (Ly) || < el |27 (W % ) ()[4 (Ly)] .

In the second case, we rewrite the left-hand side of (1.56) and use Theorem 1.11 (now we
recall that s < min(p, q)),

12857 (0 £ )a(@) | Ly (6| < el |27 (W % £) () | Ly (L),

which concludes the proof. O

1.3.5 Local means characterisation

We summarise sections 1.3.3 and 1.3.4 and give the usual formulation of the local means
characterisation. We still use the tensor construction of functions 5 described in the be-

ginning of section 1.3.3. The spaces X5(R%) and the Peetre maximal function (U%f)a were
defined in section 1.3.1. We still suppose that ¢}, ¢! € X5(R?), where the vector S will be
specified later on.

Theorem 1.23. (i) Let 0 < p,g < oo, F,a € R R, S € Z withT < R+ 1 and @ > %. If
S > R is large enough,

Daq/)i(O):O, i=1,....d, a=0,1,...,R;, (1.57)

and
W) >0 on {teR:|t <e} (1.58)
[Wit)| >0 on {teR:e/2<|t| <2} (1.59)

for some € > 0, then
1£1S5 BRI 2 |25 (W % £)]bg(Lp)]| & |27 (%7 £)al g (Ly)|
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for all f € (XS5 1(RY))".
(i) Let 0 < p < 00,0 < g < oo, 7,a € RL,R, S € Z witht < R+1 and @ > m. If
S > R is large enough, and (1.57) - (1.59) are satisfied then

|1£1S5gF(R)|| 2 |[257 (T % F)ILy(8) | =~ 1257 (TS )al Ly (L) |

for all f € (X577 (RY))".
Remark 1.24. 1. Theorem 1.23 is just reformulation of Theorem 1.20 and Theorem 1.22.

2. In the proof of Theorems 1.20 and 1.22 we followed essentially the approach described in
[25]. We point out that recently very similar results were obtained in [3].

3. We may set S = oo in Theorem 1.23. Then one obtains equivalent quasinorms on
S'(R4). By choosing S large, but finite, we may always ensure, that the new quasinorms are
equivalent at least on Sy A(R?) C (X5~*71(R?))".

Next we reformulate Theorem 1.23 using the local means in the sense of [33].

Theorem 1.25. Let 0 < p,q < oo (with p < oo in the F—case), T € Rd,§1,§2 € N¢ with
5 -5 > % +1 in the B—case and S' — 8 > —-— + 1 in the F-case. Let R € Nd be a

= min(p,q)
vector of d nonnegative integers with R > 7. Further let ko, k', ..., k% be d+1 complez-valued
functions from X° (R) whose supports lie in the set {t € R: |t| < 1} and
Fy (ko) (0) # 0, Fi(k)(0) #0, i=1,...,d. (1.60)

Let us denote
R;

Ei(t) = ko(t)  and k(1) =2" (i&R- k) (2™), i=1,...,d, n€N, teR.

As usually, we denote by ky(x) =k}, (x1) -+ - k& (24),7 = (11, ...,va) € N, the tensor product
of these functions.

The corresponding local means are defined by
(@ = [ Wi+l TeN, sek (1.61)
Rd

appropriately interpreted for any f € (X§1 (R?))'. Then, if 5% is large enough,
127k (f)| Ly (60)[| = [| IS F(RIII, f e (X (RY)), (1.62)

and L,
1277k (F)6g(Lp)l| = 11 IS5 BRI, f € (X7 (RY))" (1.63)

Proof. Put ¢} = F{ 'k and ¢ = F{ (25 k). Then the Tauberian conditions (1.58) and

de®i
(1.59) are satisfied and (1.57) is also true. If we define 1,7 € N¢, as in (1.32), we get

(Yo f)¥ () = C/Rd (V)" (y) f(z — y)dy = C/Rd(qu) () f(z +y)dy (1.64)

— [ (TItret)w0) £+ vy

=1
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Finally, if v; = 0, we get (F1v})(y;) = ki(y;) and if »; > 1 we obtain in a similar way
R;

(Fudh, ) (0) = (FL (627 (1) = 2% (R () = 2 (o

k) () = K ()

Using this calculation and (1.64) we get

WoP)'@ = [ I+ iy, TEN, seR
R
and the theorem follows. O

Remark 1.26. We point out that S' =5 = oo is allowed in Theorem 1.25.

We shall need some other modifications of Theorem 1.23. But first we give some neces-
sary notation. For 7 € Ni,m € Z? we denote by Qum the cube with the centre at the
point 27Vm = (27"'my,...,27%my,) with sides parallel to coordinate axes and of lengths
27" ..,27", Hence

Qum={r €R :|z; —27"im;| < 2% 'i=1,...,d}, 7TeN, meZz’ (1.65)
If v > 0 then vQ)»# denotes a cube concentric with Q37 with sides also parallel to coordinate
axes and of lengths y27"1, ... ~27%4,
Defining the Peetre maximal function by (1.17), we get

(U f)a(z) > ¢ sup |(Upxf)(y)|, 7€NI, xe€R%
z—y€YQ70
where the constant ¢ depends on @ > 0,7 > 0 but does not depend neither on x nor on 7.
This very simple observation gives together with Theorem 1.23 following
Theorem 1.27. LetT € R, 0 < p,q < 0o (p < 00 in the F—case). Let R € N& with R > T,
31,32 € N¢ and ky be as in Theorem 1.25. Then, for any v > 0,

D277 sup k() 1/qle(Rd)
I( )

PEN‘& z—yeYQw 0

‘%HfISZ,qF(Rd)H, fe (x5 ®)) (166)

and

1/q —2
<§)WW wp\%mwm%mWO ~ (IfIST BRI, e (XS (RY). (167)

veNd T—YEYQw 0

Another modification of Theorem 1.23 is rather technical and deals with ’directional’ local
means, namely with local means of the form (d = 2):

/ kil (y1) (21 + y1, 22)dy;.
R

To introduce these local means in the general dimension, we define for every A C {1,...,d}
kpa(f)(z) = /lA (LT ) f (@1 + yixa(l), -, za + yaxa(@) (] ] dus). (1.68)
RIZ Gea icA

It means, we restrict the integration in (1.61) to those variables y; for which ¢ € A. The
others are left untouched.

Using this notation, we may state our next Lemma.
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Lemma128 Let 0 < p < 00,0 < q<o00,AC{l,...,d} and v > 0. Let 7 € R? be such
that r; > mm(pq fori g A. Let R; € Ny and k% be as in Theorem 1.25 for every i € A.

Further let ky a(f) be defined by (1.68). Then

[(Z = |’fu,A(f)(y)|q)1/q|Lp(Rd)

eNd z—YE€YQv,0
ui:0,i¢A

holds for every f € SZ’qF(Rd). The sum is taken over all v = (vy,...,vy) € N& with v; = 0
whenever i ¢ A. The L,-quasinorm is then taken with respect to .

‘ < ol| 1], F(RY)| (1.69)

Remark 1.29. There is again a direct analogy of this Lemma for the B-scale and for non-
smooth kernels. The proof of this Lemma follows the proof of Theorem 1.23.

2 Decomposition theorems

In this chapter we present three decomposition theorems. We give atomic, subatomic and
wavelet decomposition characteristics of spaces with dominating mixed smoothness. But
first of all we explain some notation used in connection with sequence spaces.

2.1 Sequence spaces

We recall that for v € N¢,m € Z% we denote by Qur the cube with the centre at the
point 2—*m = (2_"1m1, ...,27%my,) with sides parallel to coordinate axes and of lengths

27 L, By X @) we denote a p-normalised characteristic function of ()57, it means
that X(vm( ) — 27 XQym( ). Furthermore, we write xym(z) = X, (2)-
Definition 2.1. If 0 < p,qg < 0o, 7 € R? and
A={wm€C:7e N, m e Z% (2.1)

then we define

_ U-(F—l) q/p 1/q

b= {3 Wl = (2 o)) <o} 22)

veNd mezd

and

1/q
sl = {2 ||A|quf||—H( 3 A ) 1,

veNd mezd

‘ < oo} (2.3)

with the usual modification for p and/or ¢ equal to occ.

Remark 2.2. We point out that with A given by (2.1) and gz(x Z AomXom(

meZ
obtain that

A5 001 = 11277 gllg(Lp) [, [[Alsp of [| = 11277 gzl Lo (£)]]-

Sequence spaces of this kind were denoted by Ey;s in [14] and may be understood as a discrete
version of S F(R?) and S] B(R?).
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2.2 Atomic decomposition

Definition 2.3. Let K € Nf,L +1 € Nj, and v > 1. A K-times differentiable complex-
valued function a(z) is called [K, L]-atom centred at Qyz if

suppa C YQum, (2.4)
|D*a(x)| <2*7  for 0<a<K (2.5)
and
/}ﬁ@mmzo if 4=1,...,d: j=0,...,L; and v; >1. (2.6)
R

Using this notation we may state the atomic decomposition theorem.

Theorem 2.4. Let 0 < p,q < oo, (p < 00 in the F—case) and T € R?. Fir K € N¢ and
L+1eN with

K; > (14 [ri])+ and L;>max(—1, oy, — i), i=1,...,d (2.7)

(L; > max(—1, [0, — 7;]) in the B-case).
i)

(i) If X € s, 40 and {avm () }yeng meza are [K, L)-atoms centred at Qum, then the sum

Z Z Aomtsm(T) (2.8)

veNd mezZd
converges in S'(R?), its limit f belongs to the space Sj A(R?) and
T d T
1155, ARY[| < cl|Alsy, gall, (2.9)

where the constant ¢ is universal for all admissible X and aym.

(ii) For every f € Sy ,A(R*) there is a X € s ja and [K, L|-atoms centred at Qum (denoted
again by {aym () }pend meza) such that the sum (2.8) converges in S'(R?) to f and

[ Alshqall < cl|f1Sy,AR)[. (2.10)
The constant ¢ is again universal for every f € S;qA(Rd).

Proof. We give the proof only for the F-case. The proof for the B-scale is very similar.
Step 1.

First of all we prove the convergence of (2.8) in S'(R?). Let ¢ € S(R?). We use the Taylor
expansion of ¢ with respect to the first variable

D(alaor"’o)(p 27V1m1, yg, P ,yd v «
oly) = Z ( — )(y1 — 2y (2.11)
a1<Ll '
1 Y1

+ L—l' (tl - 2_V1m1)L1D(L1+1,07m,0)90(t1a Y2y---, yd)dtl
. 2 Y1y
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and (2.6) to obtain

aym\Y s —v1 1 1
/ apm(y)p(y)dy = /d Ll(' )/ (tr = 27"y ) DI O gty o, yg)dtdy.
R : 2

.

1 (2.12)
Using an analogy of (2.11) iteratively for the remaining d — 1 variables we see that the left
hand side of (2.12) is equal to

a__(y) Y1 Yd d _
/ 5m(y) / / Tt — 2 “m) =Dt .. ta)dtdy.
Rd L 27 1my 27 Ydmyg i=1

Using the support property (2.4) of aym we may estimate the absolute value of the inner
d—dimensional integration from above by (y € 7Qum)

2T sup (D)) < e " ED () sup (@)M](D ) ()]

z€YQvm z€YQvm

where M is at our disposal. Here we denote (z) = (1 + |z|2)2 for z € R%.

Let us now suppose that p > 1 and use (2.5) and Hélder’s inequality to get for M large
enough

< 27Ty qup (2)M](DH ) |/ (Z 275 | Avm| Xy @om (U )><y>Mdy

meZd

_ 1/p -
<2 D ””‘(ZM ) - sup ()| (D) ().

d
mEZd zeR

As A e sy, f C sy band T+ L+ 1> 0, the convergence of (2.8) in S'(R*) now follows.

If p <1, we get a similar estimate

P
< 2770+ gup [(D"H ) (2) [P |Aom
sup 2

/R , XA Qo ()Y
meZd

< ¢ 97 (THL+1-1/p+1)p sup |(Df+1<p)(x)|” Z 2U‘<F_i)p|/\vm|p-

d
zeR mezd

In this case we use the fact that 7+ L +1—1/p+1 > 0 and the embedding sy of C 57 00D
Step 2.

Next we prove (2.9). We use the equivalent quasinorms in S]  F(R?) given by (1.62). Let us

choose R > K and define the functions k; for [ € N¢ as in Theorem 1.25. Then we have for
all [,7 € N¢ and all m € Z¢

2 ky(apm) (z) = 27 / ki, (41) - ki (ya) amm (@ + y)dy. (2.13)
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Further calculation depends on the size of the supports of k; and ay. Hence we have to
d_istinguish between [; > IZ and [; < v;. This leads to 2¢ cases. We describe the first one
(I > 7) and the last one (I < 7) in the full detail and then we discuss the 'mixed’ cases.

I [>w
We suppose that [ > 0. This only simplifies the notation, the terms with /; = ; = 0 may be

incorporated afterwards. We use the definition of kl’z and make partial integration (K;-times
in the 7*" variable) to obtain

d
_ . d& .
vy (. _ ol(7+1) i Lig) N
2" ki(apm) (z) = 2 /Rd i|:|1 (dtRi k ) (2"y;)apm(x + y)dy

- LS
:2M/ H(dtle>(yz)aum($1+2 Y- T+ 27 ya)dy
R

d
i=1

d
o = dBi—Ki — B B
=?“’“A;IH@ﬁer)wMDK%mmm+zhmwuﬂa+2mwmu
1=1

1

Next we use the smoothness of k¢, the boundedness of their supports and the properties (2.4)
and (2.5) to estimate the absolute value of this expression.

2l-r |ki(aﬁm) (x) | < 22-(F7f) Qﬁ-f.
/d (H Xsupplcl (yz))X’yQ(xl + 2 yla <y Xg + 27ldyd)dy-
R

Assuppk* C{t € R: |t| < 1},i=1,...,d, it follows that
17 —(K-7)(1-D)ov- F*l
7 kapm) (&) < c2-K-DEDFE R0 () (2.14)

IL <.
The integration in (2.13) may be restricted to {y : |y;| < 27%}. We use the Taylor expansion
of functions k;l (y;) with respect to the off-points 27"im; — x; up to order L;

27h k] (i) = Z ¢, (@) (yi — 27" + ;)P + 2ilLitVO(|w; 4+ 1y — 27m, BT (2.15)
0<B;<L;

and (2.6) to get

d
2”@mwau)=?““{/ arm(x +y) [ [ 2500 + y: — 27 maf ) dy
{y:lyil<2~ti}

i=1
Since
[arm(T +Y)| < XqQum (T +Y)
we obtain
) )] < 2 ENAAED [ o agay (216)
{y:lyil<27t}
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The last integral is always smaller then ¢2~7 and is zero if {y: z+y € YQum} N {y : || <
2%} = (). Hence

/ Xo@om (T + )y < 27 x oy (2). (2.17)
{wls|<27)

But the last expression may be estimated from above with the use of maximal operators M;
defined by (1.14).

2”*?‘)(627,7@7%(33) < c(Mxpm)(z)- (2.18)
Let 0 < w < min(1, p, ¢). Taking the 1/w-power of (2.18) and inserting it in (2.17) we obtain

€=

/ Xo@om (@ + y)dy < 27727 (M) = (2). (2.19)
!

Next we replace xzm by X(,l in (2.19) and insert it in (2.16).

27 |ky(agm) (@) < €20 PRI () ),

By (2.7) and (1.4) we may choose the number w such that = (F+1+L+1—2)>0.
ITT. Mixed terms.
We estimate for example the term with I; > vy, [; < v;,1 = 2,...,d.

First we apply (2.15) for i = 2,...,d and use (2.6) to leave out the terms with 3 < L. Then
we use K partial integration in the first variable. In the expression we get we use again the
support properties of the functions involved and (2.5) to obtain

217|ki(aﬁm) (./L')| S 2?-72([17111)(7‘1*1(1)22?:2 li(m—kl)—}—(li *Vi)(Li‘Fl)*ViTi

/ X’YQ—_(‘rl + 2 yl: Ty + Y2,...,2q + yd)dy,

l

where A; = {y € R : |yy| < 1,|y;| < 2740 =2,...,d}. Due to the product structure of
the integrated function we may split the last integral into a one-dimensional integral with
respect to dy; and d — 1 dimensional integral with respect to the remaining variables. The
first integral then may be estimated from above by cXyi—o-+1m,<2-+}(71). Finally we use
the maximal operators M;,i = 2,...,d to estimate the second integral. And, exactly as in
the second step, it turns out, that there is some vector @ > 0 such that

27y (am) ()| < €27 Bhea Wil D (MY 02 (). (2:20)

Let us observe that also (2.14) may be estimated from above by the right-hand side of (2.20).
Hence the estimate (2.20) is valid for all [,7 € N¢.

Using this estimate, we get for ¢ < 1,
2Z?kz (Z )\,,ma,,m> ./17
Um

For ¢ > 1, the same estimate is justified by Holder’s inequality.

€l

<cZ\A 097 T Dag=a iy li—viles (T P2\ ().
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We sum over [, take the %—power and then we apply the L,—quasinorm with respect to z.

Denoting gym = 2" )/\,,mx—— we arrive at

> 2”’%(2 /\,,ma,,m) () q

‘ ‘ TeNg v

) Iu(Re)

< (Z?”“‘"qu D)@ ) 1R

= ol |(S @) s )

v,m

Using Theorem 1.11 and the definition of w, we see that this expression may be estimated
from above by c||A[s}  f[|. On the other hand, from Theorem 1.23, we see that this already
ensures that f belongs to Sy F(R?) and proves (2.9).

Step 3.

It remains to prove (ii). Let us assume first that
L=-1, K>7, T>0p, 0<p<oo, 0<g<oo. (2.21)

Furthermore, let N € N¢ be vector of integers with N > 7. According to the construction
given at [34, page 68], we may find functions ko, k', ..., k% such that

ko, k', ... k% € S(R); (2.22)

supp ko, supp k* C {t eER:|t|<1}i=1,....,4d; (2.23)

1= F (ko) (€ ZFl ANk (277€), €eRi=1,...,d; (2.24)
vi=1

Fy(dNkY) (€) = (Fiko)(€) — (Fiko)(26), ¢€Ri=1,...,d. (2.26

We define k;(z) and k;(f)(x) as in Theorem 1.25.
We claim that then

f= Z ki(f)(z) = lim k;(f), convergence in S'(R?). (2.27)

- P—oo
leng <P

To prove this, fix ¢ € S(R?). Since the Fourier transform is isomorphic mapping from S’(R%)

onto itself and .
() = (TT Rk (=€) F(©).

it is enough to show that

oY (TIAE)=6) = e(©) in SE®Y. (2.28)

<p i=1
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The last sum may be rewritten using (2.26) as

d

Z(]i[Fl(kii)(—&)) f[( (Fiko)(—&) +Z 2—”&)) = [[(Fiko) (-2 "€)).

i<p i=1 i=1 ;=1 =1
We denote the last expression by 1—®(27F¢) and fix M € N. Using the fact that ¢ € S(R?)
we obtain

d

pu(p(€)2(277¢) <c sup 277P(D%)(&)(DP®)(277¢) [ [ ()™

0<a,f<M i=1
£cR
d
<c¢ sup 2~ P’B(D’B@)(Q_Pf) H(fi)_l
0<B<M i=1
£er?

where the constant ¢ doesn’t depend on P (but depends on M). pj, are the functionals
defining the topology on S(R?), namely py(p) =  sup  |D%(z)[(z)™

0<a<M,rcRd
If at least one of 5; > 0, then this expression tends to zero if P — oo. If # = 0, then we
split the supremum into supj¢/>or and supc,r. The first supremum may be estimated from
above by c27". To estimate the second one, we notice that |®(£)| < ¢|¢| in {€ : |€] < 1}.
Hence

: 2-P|¢|
o2~ Al
¢ sup 22T L16) < e s =

and pu(0(6)®(277€)) — 0 as P — oo. This proves (2.28) and, consequently, also (2.27).

Next we find nonnegative function v which satisfies
Y € S(R), supp is compact and Z Y(z —m) =1 for z € R?, (2.29)
mezd

and we define for 7 € Nd and m € Z¢ the function vy (z) = ¥(2”z —m). Then there is a
such that
supp Yym C YQum, V€ Ng;m € Z° (2.30)

We multiply (2.27) by these decompositions of unity and obtain

F=20 2 bom@ho(f)@) = Y D Momttum(2), (2:31)

veNd mezd veNG mezd
where
p Z sup |D*[kz(f)](y)]
0<a<i V€197
and
arm () = A L bym(x) ko (f) ().

(If some Ay = 0, then we take azw(x) = 0 as well). It follows that a5 are [K, L|—atoms
centred at Qym. The properties (2.4) and (2.6) are satisfied trivially (recall that L = —1),
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and the property (2.5) is fulfilled up to some constant ¢ independent of 7,m and x. To prove
that this decomposition satisfies (2.10), write

1/q
Wsafl<e 3 [[(3 S 2t s (0(HY) Ity

0<a<K'' ‘peNg meZd T—yevQrm

(2.32)

and use Theorem 1.27 with D%k, and D%k’ in the place of ko and k*. We lose the Tauberian
conditions (1.60) for these new kernels but according to Theorem 1.20, they are not necessary
in the proof of (2.32).

Step 4.

Now we prove the existence of the optimal decomposition for all 7 € R? and L restricted
by (2.7). To simplify the notation, we restrict ourselves in this step to d = 2. So, let us
take f € S] F(R?). In Definition 1.8 we may substitute (1 + x%)” by (1 + 2P (1 4 2572)
for p € N2 and (using twice Theorem 1.12) we obtain the respective counterpart of Theorem
1.9. Hence f can be decomposed as

82M1 g 82M2 82M1 +2M>s

g g
2My 20, oMy, 2y
0x] 0x; ox] s

f=g+ (2.33)

where M = (M;, M) € 2N2 is at our disposal and may be chosen arbitrary large, g €
T+2M 2 T+2M 2\[| av 7 2

Sy M F(R?) and [|g|S7 22 F(R®)|| ~ || f|S7 . F (R?)]].

The optimal decomposition of f will be obtained as a sum of decompositions of these four

terms.

To decompose the first term, choose M such that
191" C(®)|| < c||g|Sy 5" F(R)|.

This is possible according to [26, Theorem 2.4.1.]. Then we decompose

= Z ¢(.’L’ __ Z AOma’Om’

meZd meZd
where
Aom = €1 sup  |(D%g)(y)]
0<a<F ly—m|<c2
and 1
Gym = Al—iﬂ(x —m)g(z)
0om

for ¢i,c, sufficiently large and for ¢ with (2.29) and (2.30). Then a},, are [K, L]-atoms
centred at QQo7. Furthermore, according to Lemma 1.28, we have

1
N[ £l = (Z |Aém\p)

meZd

sup “9) ()| ILy(R?)

*Z/E’YQOO

< c||g|S; M F(R?)|| < Cl\f\Sp,qF(RQ)H-
We have used Lemma 1.28 with d = 2 and A = (.
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As for the last term in the decomposition (2.33), we may assume that M is large enough to
apply Step 3. So we may assume that we have a decomposition (2.31) for g with, let’s say,
Ao and al,(z) instead of Ay and aym(z) and [N [sTE2M f|| < c||g|STH2MF(R?)||. As
at,(x) are [K +2M, —1]-atoms, the functions 22°M DAMuM2)gd (1) are [K, 2M — 1]-atoms.
In the case of the second term we use the decomposition

= Z Z Yom(@)kz,a( Z Z Xomsm()

veENZ mezd veN; mez4
va=0 1/2:0

where A = {1}, k5 4(g)(z) are defined by (1.68),
A =22 Y- sup |D?(kz,4(9))(v)]
B<R+(2M1,0) y€c2 Qo

and

() = )\2 7 Vrm(2)kr,a(g)().

If ¢; and c, are large enough, then D(¥1.0 )aﬁm(x) are [K, L]-atoms for L; < 2M;—1. Finally,
we use Lemma 1.28 to estimate [|A?[s]  f||.

1/q
(ZQQUI(ZMIM) sup  |D” (kv,A(g))(y)Iq) Ly

—y€caQpo

Nl fll <er D

B<K+(2M1,0) ' "DeENZ
vo=0

< cllglSp* FRY)] < el f]S; F (R,

if M is chosen sufficiently large. We have used Lemma 1.28 with D?1k; and D??g instead
of £y and f. The third term can be estimated in a similar way. The sum of these four
decompositions then gives the decomposition for f.

In general dimension d one has to use the full generality of Lemma 1.28 but the idea of the
proof is still the same. O

2.3 Subatomic decomposition

In this section we describe the subatomic decomposition for spaces SZ’QA(Rd). We follow
closely [35] and [37].

First of all, we shall introduce some special building blocks called quarks.

Definition 2.5. Let ¢y € S(R) be a non-negative function with

supp? C {t € R: |t| < 29} (2.34)
for some ¢ > 0 and

Y w(t-n)=1, teR (2.35)

neEZ

We define ¥(x) = ¢(x1)---(xq) and VP (z) = 2°U(x) for z = (z1,...,24) and B € N.
Further let 7 € R and 0 < p < oo. Then

(Bu)om(z) = VP (2" —m), 7e N, me 2zl (2.36)
is called an S-quark related to Qym.
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Recall that the spaces s} ,a were defined by (2.2) and (2.3).

Theorem 2.6. Let 0 < p,q < oo (with p < 0o in the F-case) and T € R? be such that

T > 0p in the B-case and T > op, in the F-case.

(i) Let
A={N:BeN} with ¥={N_cC:veN mez

and let 0 > ¢, where ¢ is the number from (2.34). If

sup 29|*3‘H)\5\5 0] < o0
BeNd

22 2 Ao

BeNE veNd meZd

then the series
(x) (2.37)

t\
S\

converges in S'(R?), its limit f belongs to S) A(R?) and

||f\5’;q (]Rd)|| < csup 2"|ﬂ|\|)\’3|5 aH (2.38)
ﬂEN

(Baw)ym has the same meaning as in (2.36).
(i) Every f € S ,A(R?) can be represented by (2.37) with convergence in S'(R%) and

sup 2271\ | < el 117, AR (2:39)
BeNd

Proof. We give the proof again only for the F-scale. The proof for the B-scale is very similar.
Step 1.

First of all, we shall discuss convergence of (2.37). It turns out that this series converges not
only in S'(R?) but also in some L, (R%),u > 1.

Let 1 < p < oo. Then 7 > 0 and we get

2)l<ed Y D> 2N G Rom(2), (2.40)

BeNE veNg mezd

where ¥y is a characteristic function of 2271Q, . Using two times the Holder’s inequality
we get for every € > 0

|f(x)| < csup 2@ +elfl sup gie sup |)\§m Xﬁm(x).
BeNg vENd mezd

Taking the p-power and replacing the suprema with sums we get

)P <e Z Z Z 9(¢+e) Iﬂlpg\wep‘/\ﬂ 1P o m(). (2.41)

BENE veN¢ mezZd
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Let us denote § = max(p, q) and choose € such that 0 < 2¢ < p — ¢ and € < 7. Integration
of (2.41) and the Hdélder’s inequality result in

B 1/p
|1£1L(RY)| < ¢ sup 2#+2018 (Z > 2”‘%6”"”’”'?)

d
pENG veNd mezd

) a/py 1/i
< ¢ sup 2(#+29)I8] (Z 27.(7—;)4( Z |)\§m p) ) (2.42)

BeENG TENd mez4
< csup 29|’3|||/\5|3;qu < csup 29W|H)\ﬂ|8:,qf||-
BeNd BeENG

Therefore, for 1 < p < 0o, (2.37) converges in L,(R%).
If p = oo, we get the uniform pointwise convergence of (2.37) by similar arguments.

Let 0 <p< 1. Then7 > }l) — 1 and we get again (2.40). Integrating this estimate and using
Holder’s inequality, we get for every € > 0

LR <ed Dy 2Pl agy

BeNE veNd meZd

< ¢ sup 2(¢+9IAl Z Z 2*\V||)\§m _

pENG veNE mezZd
By similar arguments as in (2.42) we get

1L (RY)]| < e sup 297|[N]sp 1]
BeNd
and (2.37) converges in Li(R?).
Step 2.

We now prove that the function f defined as a limit of (2.37) belongs to S} F(R%) and the
estimate (2.38).
We decompose (2.37) into
f= Z 1 (2.43)
BeNd
with
fﬁ = Z z Agm(ﬁ@)vm(x)- (2.44)

UeNg meZd

We show that (8qu)sm are (up to some normalising constants) [K, —1]-atoms centred at Qym
for every K € N§. The conditions (2.4) and (2.6) are satisfied trivially. To prove (2.5) we
chose 0 < o < K and estimate

d

D*(Baom(e) = | [ 2D (9) (22 —m)

i=1
where % (t) = t%i4)(t). But for 0 < o; < K; and any ¢ € suppy we get by Leibnitz rule

D (WP)(1)] < ex, sup sup [DTHH] - [(DP)(8)] < e,y sup |DME]
1 <K; 72<K; n<K;

3
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The last absolute value may be estimated from above by (1 + 3;)%i2%%. Hence we obtain
D (%) ()] < cx (1 + Bi) 2%

and
|D*(Bqu)pm(z)| < ¢ 227 (1 + B)K2%P < ¢, 2272(¢+)IAI

for every € > 0. The constant ¢, is independent of 5 but may depend on K, 7 and e.

It follows that the functions ¢, '2-@+)8l(Bqu)ym(x) are [K, —1]-atoms and (2.44) may be
understood as an atomic decomposition of f?. By Theorem 2.4 it follows that

1£2185,4F(RY)|| < 29 [MP|s] £

and for = min(1,p, ¢) get by the triangle inequality for S} F (R?%)-quasinorms

1£15 FRO[T < > [1£71S]  F(R)|]"

BeENE
<c Z 2(¢+e)n|ﬁl||)\ﬁ|sg,qf”n
BeNd
< ¢ sup 2(¢+2e)n\ﬂ|||)\B|S;qf”n'
BeNd

If we choose € > 0 so small that ¢ + 2¢ < p we obtain (2.38). This finishes the proof of part
(i)-

Step 3.

By Remark 1.3 we have

with convergence in S'(R?). Let Q5 be a cube in R? centred at the origin with side lengths

22, ..., 2w2%. Hence supp ¢ C @ and we may interpret ¢ f as a periodic distribution.
Using its expansion into a Fourier series we get
(oH)(E) = 3 byme ™ £ ey, (2.45)
meZe
with

bym = 277 /_e_i(rvm){(@uf) (&)de = 27" (g )Y (27mm).

Here we used again the notation 277m = (27"'my, ..., 2 %my) for v € N¢ and m € Z-°.

Let now w € S(R?) with suppw C Qp and w(¢) =1if || < 2foralli=1,...,d. Then the
functions wy (&) = w(277¢) satisfy

suppwy C Qp, wy(§) =1 if & € supp p»

for all 7 € N¢. We multiply (2.45) with wy, extend it by zero outside @), and take the inverse
Fourier transform

(o) (@) = 3 b (o = 277m) = 3 27y’ (7 ), 7 € R

mezd mezd
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Using (2.35) and the definition of ¥, we get

= 2Py Y W27 — WV (272 — ).

meZ4 lezd

Expanding the entire analytic function w" (2 - —m) with respect to the off-point 2771 we
arrive at

ZQ'”‘bva\Il Yz —1) ZQ”ﬂ Dwﬁ('l— )(a:—2 71)P

meLL lezd BeNd
B | — —)
_ 7 b7y — 1) (i —m
=Y Y Y W0 Ji=m
meZd lezd BeNd
Hence
F=22 2. Y @e=D=2 % > ABa),
veENE BeNE Tezd veNd BeNg ez
where

Byl —m N - Bl —m
/37 — ol Z D l ) —c Z (‘PU )V(2‘“m) (D )(l )

meZ4 meZd

It remains to prove (2.39). For this reason we define
Avm = (5 f)" (277m)

and prove that
sup PN f1] < NG| < 1S PR (2.46)
eN

We start with the second inequality in (2.46).
Let z € Qpsm be fixed. Then

(o) @7"m)| < sup |(0nf)Y ()| < e@if)ale) (2.47)

T—Y€Qw 0
for every @ € Ri. We multiply (2.47) by 2”7, take the g-power and sum over m € Z? to get
2703 Mol Pom(@)f < 2 (gL f)ix), T ERLTEN.
mezd

Taking @ > we get finally with the help of Theorem 1.22

mm(p a)’

1/q
AL 1] = H(E 3 2"-w|Aumxm(x>|q) 1L, (RY)

veENE mezd

1/q .
(Zw%g ) 1L, (RY)

IJENd

< cllf1Sp  F(R)]].
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To prove the first inequality in (2.46), we mention that

ijzz =Y Aym(DPwY)(I —m) (2.48)

meZ4

p!

and recall a result proven in [36], namely that for any given a > 0 there are constants ¢, > 0
and C' > 0 such that

IDPwY(z)] < c2°PI(1 + |27, zeRY B eNd. (2.49)

Furthermore, we define

ho(z) =277 " Noy,i(@) (2.50)
lezd

=2"7) " A,1x,i(2) (2.51)
lezd

and let 0 < k < min(1, p,q). We prove (2.46) by the following chain of inequalities
20PN sy, f| = 297 [ RS | Ly (£,)
o1 (277 1
S AR IASTE (2:52)
< || [Hyl® L (£a)||* = |[Als) ]

| =292 |hp|™ | L (Ca)ll

The equalities in (2.52) involve only definitions of corresponding spaces. The second inequal-
ity follows from Theorem 1.10, choice of x and the growth of g! for |5| — co. Hence only
the first inequality in (2.52) needs to be proven.

To prove it, put (2.49) into (2.48) to obtain for every a > 0

2018 |Apm]
/\é, < Ca _vm . 2.53
| ul| - B! Z (1+ |l —m[2)a ( )

mezd
Let us take € Q,;. Using the definition of A2 from (2.50), (2.53) and the property & < 1
we get

. Apml®
27Te Ny " A |_ : (2.54)

H ()" = 2T e <
meza (L L)

We split the summation over m € Z¢ into two sums according to the size of |l — )|

A o
D i eI D[P

meL? k=0 m:|l—m|=k

Finally, we estimate the last sum using the iterated maximal operator M

S Ayl < 279 / Hy(y)|"dy
yy—z€(k+2)Qp 0

m:|l—m|=k

< 277 (k + 2) " M(|Hp|") (). (2.56)

37



We combine (2.54), (2.55) and (2.56) and arrive at

(o) < ¢ 2 (L))
(z C, %) (x
(B1)"
for every a > %. This finishes the proof of (2.52) and, consequently, also the proof of
(2.46) and hence also of the part (ii) of Theorem 2.6. O

Next we shall deal with subatomic decompositions in the general case. Namely, we would
like to prove an analogy of Theorem 2.6 without the restriction 7 > o,,.

Remark 2.7. For the need of this section we introduce temporarily following notation. Let
Ac{l,...,d} and N = (Ny,...,Ny) € R%. Then we define the vector N* = (N2, ..., N#)
by

NA =

7

N, if i€A,
0 if g A

Furthermore, we denote by D] the operator

a7
DY =
! 8.’L’Z ’

1=1,...,n, v€ENy

and by DE the operator

Di=]]Dpi=D", Ac{i,...,n}, LeN.

1€EA

Theorem 2.8. Let 0 < p,q < 0o (p < oo in the F-case) and T € RY. Further let L +1 € N¢
and & € RY satisfy

L; > max(—1, [0, — 1i]), o0; > max(o,,7), i=1,...,d,
in the B-case and
L; > max(—1, [opy — 73]), 0; > max(opg,7i), =1,...,d,

in the F-case.
(i) Let for every set A C {1,...,d}

M= 8eN} with MP={\2ecC:veN, mezy}

and let 0 > ¢, where ¢ is the number from (2.34). If

sup sup 29%]|
AC{1,...,d} BeNd

then the series

S S5 (M)t phov] @oom e

AC{1,...,d} BeNd TeNg meZd \igA
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converges in S'(R?), its limit f belongs to S, ,A(R?) and

IS AR < e sup  sup 2991|[XA7]T al]. (2.58)
AC{l,...d} BeNd

(ii) Every f € Sy ,A(R*) can be represented by (2.57) with convergence in S'(R?) and

sup  sup 29\/3’|||/\A,,3
Ac{lr"zd} /BENg

Spacll <l f155 AR (2.59)

Remark 2.9. Because of the difficulties with notation we shall give the proof only for d = 2.
Furthermore, we deal only with the F-scale. The proof for the B-scale is again similar and
technically simpler.

Proof of Theorem 2.8 for d = 2. Step 1.

First we discuss the convergence of (2.57). As the first sum is only finite, we may discuss
the convergence of the triple sum over 3,7 and m separately for each A C {1,2}. Let us do
this for example for A = {1}. Then we may rewrite the terms in (2.57) as

21/2(1'2—0'2) [D(L1—|—1,0) \I]ﬂ] (QV.T _ m) — 21/2(7‘2—0’2)2—1/1 (L1—|—1) [D(L1+1,0) (,qu/)ﬁm] (./E) (2.60)

where (Bqu)ym(z) are B-quarks according to Definition 2.5. As Ly +1 > 0 and gy — 75 > 0,
we may use the same arguments as in the proof of Theorem 2.6 and obtain the same kind
of convergence. Especially, the convergence of (2.57) in S’(R?) is ensured.

Step 2.

Let us assume that the function f is given by (2.57). Then we may understand this decom-

position as
f= > (2.61)
Ac{1,2}
We shall prove that, for every admissible set A,

141554 F (RY]| < ¢ sup 2271||x7
BeNd

sp o1l (2.62)

If A = () then the decomposition of f? in the triple sum according to (2.57) can be understood
as a subatomic decomposition of f? in the space ST F (R?) and from Theorem 2.6 it follows
that

fess FRY CSy FRY

and

172155 F(RY)]| < ¢ sup 20227 T2\B|s7 f| = ¢ sup 2¢71[|A
BENE

S;-_),qf| | ‘
BENE

If A= {1} then we use (2.60) and obtain that f{!} = D1+1.0)g where

ge SPST;+L1+1,02)F(Rd) and Hg|SI(:;+L1+1,az)F(Rd)H < ¢ sup 29|B\H)\{1},5 S;,qu'
BeNG
Hence
1S PR <1170 53 PR = || D49 g)5(0 7 (R
r+Lidl,0 d 1}),8| .7
<|lg|SS Tt F(RY)|] < e sup 207N . (2.63)

BeNd
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Using similar technique we prove (2.62) also for A = {2} and A = {1,2}. Now (2.61)
together with (2.62) shows that (2.58) holds.

Step 3.

We prove the part (ii) of the theorem. By similar arguments as in the Step 4. of the proof
of Theorem 2.4 we prove in analogy with (2.33) that for every M € N¢ such that

FT+M+1>5, M>L, and M+1 ¢ 4N
there is a function g € S;EM+F(R?) with

aM1+1g aMz-l-lg aM1+1+M2+1g

=g+ . 2.64
f g ax{WH—l axé\/b-f-l axi\ll-l—ll,éwz-f—l ( )
Furthermore o B
lglSpe™ T FRY|| & |I£1S5 o F (RY)]]. (2.65)
Let us define
gi=g, go=DM g g = DOMEDg and g, = DIMIZELML g,
Then we can rewrite (2.64) and (2.65) as
f _ N 8L1+1g2 8L2+1g3 8L1+1+L2+1g4 (2 66)
91 Dr T T gpkett T pplitilat :
with
g1 € SIHMALEF(RY) € ST F(RY),
g2 € Spg I R(RY) € ST P(RY), (2.67)

g3 € S’gt"(}+M1+1,7"2+L2+1)F(Rd) - SZ()t’f(;,T2+L2+1)F(Rd)’
g1 € STETHUP(RY).

Furthermore, the norm of g; in the corresponding space may be estimated from above by
1 £15] F(RY)|| for all i =1,...,4. We may use Theorem 2.6 for each function g; to get four
optimal decompositions and corresponding analogy of (2.39). Putting these estimates into
(2.67) and using (2.60) we get (2.59). O

2.4 Wavelet decomposition

In this subsection we describe the wavelet decomposition for spaces S} (A(R?). In general,
we follow the ideas expressed in [38]. First of all, we recall following crucial theorem from
the wavelet theory.

Theorem 2.10. For any s € N there are real-valued compactly supported functions
Po(t) € C°(R)  and 1(t) € C°(R) (2.68)
with
/tawl(t)dt —0, a=0,1,....s (2.69)
R
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such that _
{2024, (t) : j € Ng,m € Z} (2.70)

with
G (t) = Po(t —m) if j=0meZ
TV (Pt —m) if jENmELT

is an orthonormal basis in Ly(R).

(2.71)

We have already observed in previous sections the importance of tensor product constructions
in the theory of function spaces with dominating mixed derivative. Following this idea, we
consider a tensor product version of Theorem 2.10. Let 1)y and %; be the functions from
Theorem 2.10 satisfying (2.68) and (2.69). Let 1, be defined by (2.71). Then we define
their tensor product counterparts by

Ve (2) = Ykym, (T1) « - - - Yrymy (Ta), (2.72)
where
v=(z1,...,249) ERY, k= (k1,....k) €ENY and ™= (my,...,my) €Z% (2.73)
The tensor version of Theorem 2.10 then reads

Theorem 2.11. For any s € N there are real compactly supported functions
ho(t) € C*(R)  and  11(t) € C*(R)
with (2.69) such that B
{2M72 g (z): k € Ni,m € 2%}, (2.74)
with V. defined by (2.72) and (2.71), is an orthonormal basis in Ly(R?).
Now we have all the necessary definitions at hand and we may state our wavelet decompo-

sition theorem. As usual S} A(R?) stands for S) B(R?) or S; F(R?), and s] a for s7 b or
sp of Tespectively.

Theorem 2.12. Let
F=(r,...,ta) €ERY, 0<p<oo, 0<g<oo

with p < oo in the F-case. Then there is a natural number s(7,p,q) such that the following
statements hold.

(i) Let A € s} ,a. Then

1. The sum
Y T (2.75)

keNg ,meze

converges in S'(R?) to some distribution f.
2. feS; AR and
1£185.4 AR < el|Alsp qall, (2.76)

where the constant ¢ does not depend on A.
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3. The sum (2.75) converges unconditionally in Sy *A(R?) for any € > 0.
4. If max(p, q) < oo then the sum (2.75) converges unconditionally in S; ,A(R?).
(ii) Let f € S) ,A(R?). Then we may define the sequence \ by

Nem = 2‘E|(f; Ui, ke Nga me Zd’ (2.77)

and it holds

1. M€ sz,qa and
[[Als] qal| < ¢l £]S; ;AR (2.78)

where the constant ¢ does not depend on f.
2. The sum (2.75) converges in S'(R?) to f.

8. If v € s} ,a and the sum Z Y Yim converges in S'(R?) to f then v = \.
keNd,mezd

Before we come to the proof of Theorem 2.12 we clarify the technical problems caused by
the limited smoothness of the functions W

2.4.1 Duality

As the functions Uy are of bounded smoothness, they do not belong to S(R?). According
to (2.68), (2.71) and (2.72), we have only Uz € C~+*)(R?). Hence it is impossible to
understand the expression (f, Uz) in the distributional sense for every f € S'(R%).

To give a meaning to the symbol (f, ¥;..), one has to study the dual spaces of S} ,A(R?)
first. As far as the Fourier—analytic version of classical Besov and Triebel-Lizorkin spaces is
considered, the corresponding theory was presented in [32], Chapter 2.11. It is not difficult
to see that one may adopt these results to the spaces with dominating mixed smoothness.
We do not intend to give some exhaustive theory. The only fact we need is

[S7,BRY)] =S "B[R?), TeR! 0<p<oo,

where

1 1
—+—-=1 for 1<p<oo
p p
and
p=oc0 for p<1.

The functions
D*U-

km>

0<a<(s...,s),
are bounded functions with compact support. Using Holder’s inequality, we see that
|| DU  Ly(R?) || < o0

for every
0<a<(s...,s), 0<p<oo.

Using the Littlewood-Paley theory, we get

g € S5, F(RY), 1<p<oo
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for s = (s,...,s). And, by the Sobolev embedding,

S5, F(RY) < [S) <BRY)] = 5,7 " B(RY)

4
for s large enough and every e > 0.
So, for B )
fes ARY) < S B(R?)

we may interpret Wy as a bounded linear functional on a space f belongs to. And (f, ¥z..)
is then the value of this functional at f.
We may also reverse these arguments. The functions Uz belong to

SI,FRY), 1<p<oo
and B )

Sz F(RY) < S3-B(RY).
Hence, for s large, we get )

f€S;BRY).

In this case we may interpret f as a linear bounded functional on a space Wz belongs to.
(f, ¥g,) is then the value of this functional at V.

Proof of Theorem 2.12, Part (i). Let A € s7 f. If
s > max{(1 + [ri])+,[opg — 1]t =1,...,d}

and § = (s,...,s) € R? then Uy are [3,5|—atoms cantered at Q.. So, for s large, all the
assumptions of Theorem 2.4 are satisfied and, according to this theorem, (2.75) converges in
S'(R?). We denote its limit by f. The same theorem tells us that f € S} F(R?) and implies
even the estimate (2.76). Hence the points 1. and 2. are proven. Very similar arguments
apply also to the B-case.

For X € s} ,a and natural number y we define
M= {M_:keN,meZ%

by

km

0 otherwise.

If max(p, ¢) < oo then B
lim [|A\"[s, al| = 0. (2.79)
HU—00 4

This is clear in the b—case and one has to use Lebesgue’s dominated convergence theorem
in the f—case. Using (2.76), already proven, we finish the proof of 4.

In the proof of the third point, we replace (2.79) by

ull)rgo A sy all = 0. (2.80)

To see that (2.80) holds, one uses the same reasoning as in (2.79), and Holder’s inequality.
This finishes the proof of part (i). O
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Proof of Theorem 2.12, part (ii).
The meaning of the expression (f, Uz) was already discussed in section 2.4.1. For the rest
of the proof we consider only the F'—case. The proof for B—spaces is very similar.

Before we prove the first statement of the second part we do some calculation. We may
rewrite the norm in s7  f as

[I\lsp.gf Il = 112%7 gl Ly (€)1 (2.81)

where

g5(®) = Y MeXgm (@)- (2.82)

meZ4

If z € Qs and A is defined by (2.77) we use (2.82)

95 (7) = Ay = okl /

R4

U (y) f(y)dy = 2 / W (Y1) <+ - Vgma (Y2) () dy.
R
We assume that k > 1, insert the Definition (2.71) and substitute z; = y; — 2~ %m,

gp(@) =25 [ (@M 20) (@) F(27Fma + 2, 27 Ry + 2g)dz
R4

= Ki(f)(27"m).

Here Kz(f)(27%m) denotes the local means

KeDW) = [ Ke@)fy+2)dz,  yeRL (2.83)

Rd

for the kernel B
Ke(z) = 2WMlpy (25121) - .- 1 (2% 2g)

We point out that all integrals have to be interpreted in the distributional sense. If one (or
more) k; = 0, only notational changes are necessary. Hence, for every z € Qs

lgx(z)| < sup  |Kg(£)(y)]-

y—z€Qg o
Applying Theorem 1.27 we see that
I\lsp.qf 11 = 11257 g Ly (€0) ] < c|1£1Sy,4F (RY)][.

This finishes the proof of 1.

To prove the second statement, we define a new function g by

g= Z /\Em\IIEma (2'84)

keNd mez

where Ag;; are given by (2.77). The convergence of this sum is guaranteed by A € s f
(which we have just proved) and by part (i). It shows even that g € Sj F(R*). We need to
prove that ¢ = f or, equivalently, that

(9,0) = (f,¢) forevery ¢ e SRY).
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First we consider the expressions (g, U_,). As X € s f, (2.84) converges in any S;5F(R?),
where € > 0 may be chosen arbitrarily. If the number s is chosen sufficiently large then,
according to Section 2.4.1, ¥, € [S;5°F(R?)]'. Hence

(9: V) = lim ( > )\Em\llzm,\l/k/m,): Jim > 2R ) (U, Y-
|k|<p,mezd |k|<p,mezd

Using orthogonality of system (2.74) we arrive at
(9,90 )= (f,¥p_), keN, m ez

One may extend this argument to any finite linear combination of Wy_,. For a general
function ¢ € S(R?) we consider its Fourier series decomposition with respect to system
(2.74):

Y= Z 2|E|(S0a Vi) V- (2.85)
k,m

As S(R?) is a subset of all Fourier-analytic Besov and Triebel-Lizorkin spaces, we see that
(for s large enough) (2.85) converges also in the space [S]5°F(R*)]. Hence we get

(g:0)=lim > 2%, V) (g, ) = Tim > 2, V) (f, i) = (£ 0).
(k| <p;meze (k| <p,mez

Hence the sum (2.75) converges to f.

The final step, namely the proof of the third statement, follows now very easily. Suppose
that the assumptions are satisfied. We define the coefficients A;. by (2.77) and g by (2.84).
Then we get f = g according to point 2. And by the same duality arguments as there we
obtain B B

Yeom = 202 (F, V) = 2M2(g, W) = N, k€N, meZC

3 Entropy numbers - direct results

3.1 Notation and definitions

We have seen in the previous section the sharp connection between function spaces S;QA(Rd)
and corresponding sequence spaces s, ,a given by several decomposition techniques. We
would like to use these results to study the entropy numbers of embeddings of function
spaces with dominating mixed smoothness on domains.

First, we define function spaces on domains by restrictions of function spaces defined on R¢.

Definition 3.1. Let Q be an arbitrary bounded domain in R?. Then S] A(R) is the re-
striction of S7  A(R?) to €

SrAQ) ={feD(Q):3g€e S AR with g¢|Q=f} (3.1)
1£1S54A)]| = inf ||g]Sp ;AR ], (3.2)

where the infimum is taken over all g € S7 A(R?) such that its restriction to {2, denoted by
9/, coincides in D'(Q)) with f.

45



Next, we define the sequence spaces corresponding to SF A(Q) The change with respect to
sp 40 is rather simple. In Definition 2.2 the sum over m € Z* represents a discrete analogy
of L,(R%)-norm and the sum over 7 € N¢ the sum over all coverings of plane with dyadic
cubes. So, to adapt Definition 2.2 to suit well to function spaces on domains, we have to
restrict the sum to those m which are in some relation with €.

For that reason we define for every bounded domain Q C R¢
A2={meZ: QumnNQ#0}, 7eN.
The sequence spaces associated with a bounded domain 2 are then defined by
Definition 3.2. If 0 < p < 00, 0 < ¢ < 00,7 € R? and
A={\wm€C: 7N, m e A%}
then we define
_ _ — 1 q/p 1/q
s;:ffb = {/\ : ||)\\5;;’§121)H = <Z 2”’“‘5”( Z \)\ym|p> > < oo} (3.3)
veNg meAZ
and

1/q
8 :{A:||A|s;;§f||:H(Z T |2"-umx,,m<.>|q) 1L, (RY)

veNE me Al

‘ < oo}. (3.4)

Furthermore, we define corresponding building blocks.

Definition 3.3. Let 0 < p < 00, 0 < ¢ < 00,7 € R? and let u € Ny be fixed. If

then we define

(sp51b), = { AL (sp0b) (Z 97 (7= 3)a ( Y |Aﬁm|p) q/”) v < oo} (3.5)

[7|=p me A%
and
) o 1/q
e = {0 S0 = (2 X 2 hmuomO) 1,9 <o} G
[v|=p e AD

Remark 3.4. 1. We point out that, that for the number of elements of A we have trivially

#(AH ~27", veN (3.7)
where the constants in this equivalence depend only on Q. The dimension of (s]a), will be
denoted by

D, =) #(A}), pneN,. (3.8)

P X9) 7,0 7,0 : 7,0
2. As usual, we write s}'a for s7'b or sp' f respectively. The same holds for (s}/a),.
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Next we define the notion of entropy numbers and recall its basic properties. We refer to
[10] and references given there for details.

Definition 3.5. Let A, B be quasi-Banach spaces and let T" be a bounded linear operator
T € L(A, B). Let Uy and Up denote the unit ball in the spaces A and B, respectively. Then
for every k£ € N we define the k-th dyadic entropy number by

ok—1

ex(T) :=inf{e > 0: T(U,) C U (b; + eUg)}

j=1
for some by, ..., b1 € B.

Definition 3.6. Given any p € (0,1] and a quasi-Banach space B, we say that B is a
p—Banach space, if

lz +y|B|P < [|=[B[” + |ly|B||P forall =z,ye B. (3.9)

It can be shown that if ||- |B||; is a quasinorm on B, then there is p € (0, 1] and a quasinorm
||+ |B||2 with (3.9) on B which is equivalent to || - |B||;. We refer again to [10] and references
given there for details.

Theorem 3.7. Let A, B,C be quasi-Banach spaces, S,T € L(A,B), R € L(B,C). Then

o [[T|[>e(T) > ex(T) >--->0.
° ek—|—l—1(RO S) < ek(R)el(S), k,l € N.
e If B is p-Banach space, then e}, (S +T) < €,(S) + €/ (T)

Remark 3.8. We refer to the first property of entropy numbers from Theorem 3.7 as mono-
tonicity, the second is called submultiplicativity and the last one is quoted by subaditivity.

Although we shall not need it in sequel, we quote the fundamental result of Carl (see [6],
[7] and [10] for details). It illustrates the importance of estimates of entropy numbers in the
study of spectral properties of compact operators.

Theorem 3.9. Let A be a quasi-Banach space and let T € L(A, A) = L(A) be a compact
operator on A. We denote its non-zero eigenvalues with respect to multiplicity by

(A(T)| = [Ae(T)| = [As(T)| = -+~ > 0.

Then
AR(T)| < V2ex(T).

In what follows we restrict ourselves to 7 = (r1,79,...,7¢) € R¢ with 7y =719 = -+ = 1y,
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3.2 Basic lemmas

Now we collect some basic properties of the building blocks defined by (3.5) and (3.6).

We start with the following
Lemma 3.10. 1. Let 0 < p1,ps < oo and N € N. Then

<
lid - zN%zNH—{ Pr= P2

N3 ”1 P12 Do
2. Let0<p<ooandT=(r,...,r) € R Then

_ _ r_1
(sppb)u = (sp5 ) =277, pe N

pp

and

The number D,, is given by (3.8).
3. Let 0 <py<p <o00,0<qg<00and?=(r,...,r) € RY. Then

|lid : (s}, pl @ a)y — (Szg?qa)uH ~1, peN.

4. Let0< g <q1 <00,0<p<ooand7=(r,...,r) € RL. Then

7,Q (d=1) (g5 = a;)

|[id - (s} p,ql a), — (Spiqza)uH ~ ueN

All constants of equivalence involved in (3.13) and (3.14) do not depend u € Ny.

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Proof. The proof of 1. and 2. involves only (3.5) and (3.6). For the proof of 3. in the case

a = b we write

[A|s7b]| = (Z o (7= 1) (Z I/\——|P2)q/p> 1/q

[7|=n meAS
a/p2\ 1
=2 (T__)(z ( Z |)\vm|p2> 2)
Tl=pn meA?
1 a/pi\ 4
S C2I~l(r )2“ 23 p1 (Z ( Z |/\ |p1) 1)
[T|=u mEAQ
= c||AlsE b,

where we have used (3.10).

In the case a = f, we get by Holder’s inequality and boundedness of €2

1/q
HA|sp2qf|\—H(Z S 2 Ao \) L, (RY)

uENd meAQ
o 1/q .
s ¢ (Z > 12 em m(-)\q) | Ly, (RY) ‘
veNg me A%
= c||Alsp;% -
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The proof of 4. involves only 1. and
#{y e N i |7 =}~ !, peEN.

O

Next, we recall a fundamental result which is essentially due to Schiitt [27] and Kiihn [17].

Lemma 3.11. (i) If 0 < p; < py < 00 and k and N are natural numbers, then

1 if 1<k <log2N,
eulid: () = £) ~ § (k" log(1 + N))mTEif log2N < k < 2N, (3.15)
o— & Nos o1 if 2N <k,

where the constants of equivalence do not depend on k and N.
(ii) If 0 < ps < p1 < 00 and k and N are natural numbers, then

1 1

ep(id : £) — 1)) = 27 oW Nz (3.16)
where the corresponding constants again do not depend on k and N.

Remark 3.12. We refer to [27], [17], [10] and references given there for the proofs of this
fundamental result.

Lemma 3.13. Let

r = (Tla"'aTl) € RdaF2 = (TQa"'7T2) € Rda 0 < P1,DP2,41,492 S 0.

Let k > 2D,,. Then

er(id : (5751 a), — (572 al),) ~ 2~ i e H(%- )2“(”_”) (3.17)

pl q1 P2,92

with constants of equivalence independent of k and p.

Remark 3.14. The symbols a and a stand for b or f, not necessary for the same letter.
Hence the formula (3.17) represents actually four different equivalences and, consequently,
eight inequalities are to be proven.

Proof. Let us denote

v =min(py, ¢1), Y2 = min(ps,q2) (3.18)
61 = max(pi,q1), Jo = max(ps, ga)- (3.19)

Step 1.

In the first Step we use the following diagram to estimate ex(id) from above.

(spaads == (et

P1,q1 D2,92
id1l Tids (320)
- id

(e — (siaa),.



Using the submultiplicativity of entropy numbers (see Theorem 3.7) we get
ex(id) < [|idy ] - [|ids]| - ex(idy) (3.21)
To estimate ||id,|| and ||ids|| we use (3.13), resp. (3.14) and get

fidaf| < eV a)e gy < ep(a7d). (3.22)
To estimate eg(ids) we use Lemma 3.11 and (3.11)

_ 1
Tl,Q ~ :u(rlifyi) D,u
(S’Yly’na)“ ~2 ! g’h

and its counterpart for (s;5 at),. This gives

1 1

en(idy) < c2MTTITATITImE) g ek, pa T n (3.23)
Putting (3.22) and (3.23) into (3.21) and using D, ~ u4 '2* we get the desired result and
finish the Step 1.
Step 2.

We prove now the estimates from below. Let 1,2, 01, 02 be still defined by (3.18) and (3.19),
respectively. We use following diagram.

_ id _
(spria) — (500N,

ile lids (3.24)

— Q 'd _
(560 —— (525,00,

As idy = id; oid o id3 we may use again the submultiplicativity of entropy numbers. The
estimate for the entropy numbers of id, is given by Lemma 3.11

1 1

1 1 k
. — 1_ 1y __k_ 3
ek(zdg) >c 2“( EREERE T 72)2 2Dy DJZ !

and for ||id;|| and ||ids|| we use similar estimates as in the Step 1.

1 1 1 1
i < en® VG ) lidy| < e B (3.25)
From this the result immediately follows. O
Lemma 3.13 is a generalisation of Lemma 3.11 as far as the third line of (3.15) and (3.16) is
concerned. So, for £ > 2D, the estimate (3.17) provides four equivalences with constants

independent of £ and p. In the case £ < 2D, the situation is not so simple any more; we
give two different estimates from above.

Lemma 3.15. Let
T1=(r,...,m) € R, 7y = (roy...,19) € R, 0<pi,p2qi,q0 < 00
with p1 < py. Let k <2D,. Then

ex(id : (shda), — (sp20al),) < cu(d’l)(H*H+E*E) gt g, (3.26)

H 11
+ 1)} nod
where ¥1,Ys, 01, 09 are given by (3.18) and (3.19). The constant c is independent of k and .
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The proof of Lemma 3.15 copies exactly the first step of the proof of Lemma 3.13.

The second estimate from above follows closely the idea of Kiihn, Leopold, Sickel and
Skrzypczak expressed in [18].

Lemma 3.16. Let
Fi=(r1,...,m1) €ER Ty = (rg,...,m9) €ERY, 0 < p1,po,q1, 2 < 0

with
1 1 1 1
p1 < pa, — = > — = —.
b D2 q1 gz

Let (d—1)p%tlogu <k <2D, =2 > l=p # A2, Then

ex(id : (ST0b), — (sT22b),) <c 2" TR e T (3.27)
11 d*12l‘ 11

o2 Thr [log(u : P1 Py

+Y)F

Proof. We denote X; = (32@:21)) u, % =1,2. We shall construct an e—net of X,—balls covering
a unit ball By, of X;. For that reason we fix some ordering of the set {7 € N¢ : |[v| = u} =
{7, ..., 794} where

, ME N(). (328)

_ _ +d—-1
Sa= e pl == (")

First we consider the subset of By,
B ={A€ By, : |2 [ Xa][ 2 [[A2 [ X0 ][ 2 -+ 2 [[Apsauar | X[ [}

and construct an e—net N in X, for B. Then, if II is any permutation of the index set
{1,..., 5.4} and

Bn = {A € Bx, : [[Agney | Xi[| 2 [|Agnen [ Xu[[ = - - 2 |[Agncsquan [ Xa[[}
we get, by permutation of the coordinates, e—nets N for By, all having the same cardinality
as N, say 2.
Clearly, Bx, = Uy By, where the union is taken over all permutations IT of the set {1, ..., S(u, d)}.

Hence Up N is an e— net in X5 for By, of cardinality

S(p, d)12F < pld=Dn gk — o(d-1)u log ik

It remains to construct an e—net for Bx in X,. For A € B we have ||\,;|X;|| < j~Yo. If
ki,...,ks(u,q are arbitrary natural numbers, we set

1

€ = Cj—l/q12.u(—r1+%+r2—p2) [kj_l log(% 11

k;

+1)]ER

and, according to Lemma 3.11, we find ¢;— net N in 2“(T2_$)€,’:‘2j for j'/9 By, where Y =

2#(n=3) 4 and A, = #(A2).
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Thus M7 X ... X Ng(q) is an e—net in X, for B of cardinality 25 sw.a), where

¢ = ( Z 6;;2> .
j=1

Finally, we choose k;,j =1,...,S5(u,d). Fix m € N and set
kj = 2mj—a,

where 0 < o < 1 is chosen such that

Th
o S(p,d)
k= Z kj ~ QmM(dfl)(fa—H)
j=1
and
S(u:d) 1

1 1 1

j
j=1
Substituting for 2™ from (3.29) we get

S(“ad) 1

( Y 6‘1.2)5 ~ 2“(—“+ﬁ”2—%)k%—ﬁu(d—l)(%—é+é—i) log (£ 25 N

J
i=1

which finishes the proof.

3.3 Main result

(3.29)

1

( Z eq.z) 2 2“(*’“%*”*%)zm(afa)s(u, d)a(afa)*a+$ [log(2# ™ p® + 1)] 71 7.

In this subsection we present our main results concerning sequence spaces. Our aim is to

estimate the entropy numbers of

- 7. oT1,82 72,2t
id : Spigi @ T Spaigp@ -

First we split the identity (3.30) into a sum of identities between building blocks

o
5 ; c gL TR 72,0 f
1d = E idy, idy sy, a = sy al
n=0

where
Ao if |7| = p

0, otherwise

for all 7 € N¢, m € A2

92

(3.30)

(3.31)

(3.32)



Next we observe that

ex(id,) = ex(id,), keN, pelNy, (3.33)
where ) )
idL : (sglljffla)“ — (s;“;”ffzat)“, neN (3.34)

are the natural identities between our building blocks.

First, we characterise when the embedding (3.30) is compact.

Theorem 3.17. Let
Ti=(r,...,r1) ERLTa = (ra,...,12) €RY, 0 <p1,p2,q1,¢2 < 00. (3.35)

Then the embedding (3.30) is compact if and only if

1 1
a=ri-n-(1-1) >0 (3.36)
b1 P2/ +

Proof. Part 1.

In the first part we prove that (3.36) is sufficient for compactness of (3.30). First we restrict
to the case

00 <p <py<ooanda=a =b.

It is an easy exercise to show that

1 _ 1

_ _ . ~ . (e — 11
lid 50— s5zabll = i) (525D — (5ol < 270 5 0, ) ()

where the number S(u,d) was defined by (3.28). So, if (3.36) is satisfied, then we may
approximate the operator id by finite ranks operators P; = Zﬁ:o idy,.

o0 <p <pr <@

In this case we choose € > 0 such that

1 1
7“1—7“2—(———) > 2e
b1 P2

and use following trivial embeddings

71, 71—€,02 To+¢€,02 72,2
Spr® " Spia b— Spa,ga b— Spayga® -

All these embeddings are continuous, the middle one is even compact.
e () <py <p1 < oo

Now we use the following line of embeddings

FI;Q Flyﬂ F270 T
Spgr® T Spp.gi @ T Spyga @ -

We have already proven, that the second embedding is compact. As the first embedding is
continuous, it finishes the proof of part 1.

Part 2. If (3.36) is not satisfied, we construct a sequence {e, }>°, from the unit ball of s7t:?

such that [le, — ey [s)2 0 af|| > ¢ > 0 for p # p'.

a
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Let us start with the case p; < po. For u € Ny fixed, we choose one 7, € N¢ with |7,| = p
and one 777, € A} . Then we set

(QA)Vm = {Z_H(Tll/pl) for 7= Uy, M= My,

0 otherwise.

When p; > ps we fix again one 7, € N with |7,| = p and define (e,)pm =2+ for v =10,
and m € A% and (e, )pm = 0 otherwise. O

It is our main task to estimate the decay of ey (id) for id given by (3.30) when this sequence
tends to zero, it means when (3.36) is satisfied. First we get the estimates from below.

Theorem 3.18. Let 71,79, p1, P2, ¢1, g2 be given by (3.35) with (3.36). Then

1

7 7 ) (r1—re+ L -1
ex(id : s;if;la — szzigﬂf) > ck™ " (log k)(d 2l ta q1)+, k> 2, (3.37)

where the constant ¢ does not depend on k.

Proof. Step 1.
For every 1 € N we consider the following diagram:
id,

(871’9 a/)u —#> (8F2aﬂ aT)M

P1,q1 p2,q92

" Tia (3.38)
717Q —>Zd ?279 T

SPllea 81’2;‘12a

The meaning of id and id, was explained by (3.30) — (3.34). id; extends a given finite
sequence by zeros while ids is the identity restricted to the py—th building block. Hence

idi({Mvm}:|P| = p,m e A7) =
({rwm} : om = Aom for [7] = pand 45w = 0 otherwise)
and
idy({Mom} 7 € Ny, T € A7) = ({Dom} : 7| = p).

For
k=2D, (3.39)
we get by Lemma 3.13

1

eplEmm) anrem) < ey (id)) < [[idh || - |lids |- e (id) = e (id).

k

m . Hence

If k is given by (3.39) we get p = logk and 2* ~

1

ex(id) > ck™ " (log k)(d_l)(rl—h-l—é—a)'

By monotonicity, we extend this results to all £ > 2.
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Step 2. We repeat the same arguments with different building blocks. The diagram (3.38)
is replaced by

N1

o) g 9, ) i
idll TidQ s (340)

71 ;Q a Z—d) 87‘2 ) a/T

Spl,ql P2,q2

where A, = #(A2) for some 7 with |7| = . Instead of Lemma 3.13 we use Lemma 3.11 to
get for k =24,

c2ur2mm) < ey (id),) < |lidy| - ||ida|| - ex(id) = ex(id).
Finally, we substitute 2# ~ k, get
ex(id) > ck™™ "
and use monotonicity arguments to extend the result to all £ > 2. O

Theorem 3.19. Let 71,79, p1, P2, ¢1, g2 be given by (3.35) with (3.36). If

1 1 1 1
a>Vilp,q,p2,q2) = ——F—<— —+ — — ————— (3.41)
mln(pla Q1) p1 P2 max(pg, CI2)

for p1 <py and
1 1
a > Vi(po, q1,p2,q2) := — — 3.42
(P2, 01,2, @) min(ps, q1)  max(pz, g2) ( )

for p1 > pso then

ex(id : sT a — 5728 al) < c k™7 (log k)@Y )(r- 72+E_ﬁ) k> 2, (3.43)

where the constant ¢ does not depend on k.

Proof. Step 1.
We restrict ourselves first to the case p; < po.
We split id as indicated in (3.31)

J L
id=> id,+ Y id,+ i id,,
n=0 p=J+1 p=L+1

where the numbers J < L shall be specified later on. Furthermore, we shall later define
natural numbers k,, p = 0,...,L and k£ = Zﬁ:o k,. This will supply the fundamental
estimate

J L [e%s)
Pad) <> ef (id)+ Y ef (idy)+ Y [lidal o=min(1,ps, ). (3.44)
u=0 p=J+1 u=L+1

We recall that by (3.33) one may substitute ey, (id,) by e, (id},).

Step 2. Fix now J € N. We show how to choose the numbers L and %, (in dependence of
J) and we estimate the three sums in (3.44).

35



We start with the last one. First we remark that

1 1

lid|| < camey@ama)s, e

and

Z Hld HQ<C Z 2ok, o(d (qz q1)+ <2 gaLLQ 1)($7ﬁ)+’
pu=L+1 Pt

Finally, we choose L > J large such that the last expression may be estimated from above
by

S e et o0 ),
p=L+1

Step 3. We estimate the first sum in (3.44). We define
k,=2D,2V"M >9D,  u=0,...,J

where € is an arbitrary fixed number with 0 < € < 1. Then we get

J

> kg2 (3.45)
=0
By Lemma 3.13
1 J 11
eku(id ) 2~ o(J— u)E,UJ(d 1)(q2 q1)2u(r2 r1) Zeip(ldu) ~ Jg(d_l)(E_H)QQJ(m_”), (346)
pn=0

Step 4. We estimate the second sum in (3.44). We set
k,=2D,2Y"mW*<2p, J+1<pu<L

where ¢ is chosen such that

1 1
x>1, r—r >%<———) 3.47
' ’ T 02 ( )

v and 6o was defined by (3.18) and (3.19), respectively. Then we get

L
> kg2 (3.48)

p=J+1

By Lemma 3.15 we get for ey, (id,)

ex, (id,) < cu(d_l)(‘lg f11)2“(7"2 “)2(‘]_“)”(5_%) [log(c?‘“‘“)” +1)] T
By (3.47) we get
3 el (id,) ~ Jea=0 (& =0) gestra=ra) (3.49)
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Finally, we put (3.45), (3.48) together with (3.46) and (3.49) into (3.44) and obtain

1

oy yiias (id) < ¢ 740G ) gra=r0),

Substituting £ = ¢;J9!'27 and using monotonicity arguments, we finish the proof of the
theorem for p; < ps.

Step 5. In the case p; > p, we use the chain of embeddings

F1752 F179 FZ’Q T
Splaqla = S;DQ,Qla = SP%QQG .

The first embedding is then continuous (as p; > po and 2 is bounded), the second is covered
by previous steps. Altogether, it finishes the proof. O

Remark 3.20. 1. One notices immediately a gap between (3.36) and (3.41). To eliminate
this gap we use a complex interpolation method in the next chapter.

2. Lemma 3.16 allows us to reduce the gap a bit in a special case, where a = af = b. If
we use Lemma 3.16 instead of Lemma 3.15 in the Step 4. in the previous proof, we get the
same result, namely (3.43), for

1 1 1 1 1 1
PL<py Ti—T2t———>0, ———>———
b2 M b1 D2 q1 42

4 Complex interpolation

In Theorem 3.18 we obtained an estimate from below for entropy numbers of the embedding

- 7. 1,02 72,2t
id @ sy 0 = Sy al. (4.1)

The corresponding estimate from above was obtained in Theorem 3.19 for

1 1 1 1 1 1
(1/27"1—7'2—(———)_1_>,——_+__7. (4.2)
P P min(pi, p2,q1)  p1 pp max(ps,go)
So for any p1, po, q1, g2 we have one natural boundary for r; — ro which ensures compactness
of (4.1), see Theorem 3.17, and a second one, in general larger and given by (4.2), where
the estimates from above and from below for entropy numbers of (4.1) coincide. The main
purpose of this chapter is to eliminate this gap using a complex interpolation method. We
follow closely [20].

4.1 Abstract background

In this subsection we briefly describe the complex interpolation method of [20]. We quote
only the minimum needed for our purpose.

We say that two quasi-Banach spaces Xy, X; form an interpolation couple (Xo, X;) if there
is a Hausdorff topological vector space X such that X, and X; are continuously embedded
in X. Given an interpolation couple (Xg, X;), we define the space Xy N X; by

XonX, = {.73 e X: ||.’E|X0ﬂX1|| < OO},
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where
7| Xo N X1|| = max{||z|Xo|l, ||| X:[|}.

Similarly, we define the space Xy + X; by
Xo+ X; ={z € X :||z|Xo + Xi]| < o0},
where
||lz|Xo + X1|| = inf{||zo| Xo|| + ||z1|X1|| : 2 = 20 + 21,25 € X, =0,1}.

It is easy to verify that Xy N X; and X, + X; are quasi-Banach spaces, see for example [5]
for details.

If X is a quasi-Banach space and €2 C C is an open subset then f : Q@ — X is called
analytic if for each zy € Q there exists 7 > 0 such that there is a power expansion f(z) =
> 0 Zn2™, x, € X, converging uniformly for |z — 2| < r.

Given an interpolation couple (Xy, X;) of quasi-Banach spaces, we consider the class F of
all functions f with values in Xy + X, which are bounded and continuous on the strip

S={2€C:0<Rez<1}
and analytic in the open strip
So={2z€C:0<Rez<1}

and moreover, the functions ¢ — f(j + it)(j = 0,1) are bounded continuous functions into
X;.

We endow F with the quasinorm
|| f1F | = max{sup || f(it)| Xo||, sup || f(1 + it)| Xy ||} (4.3)
teR teR

Finally, we set
[Xo, X1]p:={z € Xo+ X1 : 2= f() for some f € F}, 0<6<1.
This space is equipped with the quasinorm
||2|[Xo, XuJol| == inf{|[ f|F|| : f € F, f(0) ==}, =z € [Xo, Xi]p.

As far as the classical complex interpolation theory of Peetre is considered, we refer again to
[5] and references given there. However, it is well known, that the extension of this complex
interpolation method to the quasi-Banach spaces is not possible due to the possible failure of
the Maximum Modulus Principle in the quasi-Banach context. However, there is a significant
class of quasi-Banach spaces, called A—conver, in which the Maximum Modulus Principle is
valid. As far as the study of this class is concerned, see [20] and references given there for
details. We quote only the minimum from this theory needed in the sequel.

Definition 4.1. A quasi-Banach space (X, ||- |X||) is called A—convez if there is a constant
C such that for every polynomial P : C — X we have

IPO)LX]} < Cmax|[P(2)| X]|
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Next theorem shows that in the frame of A-convex quasi-Banach spaces the Maximum Mod-
ulus Principle holds.

Theorem 4.2. For a quasi-Banach space (X, ||-|X||) the following conditions are equivalent:
(i) X is A—convex
(ii) there exists C' such that

max{||f(z)| X[ : z € So} < Cmax{[|f(z)|X][|: z € §\ S}
for any function f : S — X analytic on Sy and continuous and bounded on S.

In the special case when X, and X; are quasi-Banach lattices, it was observed by Calderén
that the interpolation space [ Xy, X1]y coincides with the so-called Calderdn product of spaces
Xy and X, usually denoted by X&’aXf. We quote again necessary definitions and corre-
sponding theorems from [20].

First, let (X, S, 1) be a o—finite measure space and let 9t be the class of all complex—valued,
pu—measurable functions on X. Then a quasi-Banach space X C I is called a quasi-Banach
lattice of functions if for every f € X and g € 9 with |g(z)| < |f(z)| for u—a.e. x € X one
has g € X with [|g|X]| < |[f]X]].

Furthermore, a quasi-Banach lattice of functions (X, || - |X||) is called lattice r-convez if

1] < (S user)
=1 j=1

J
for any finite family {f;}i1<j<m of functions from X.

The following theorem gives a very simple condition for lattice of functions to be A—convex.

Theorem 4.3. Let X be a complexr quasi-Banach lattice of functions. Then the following
assertions are equivalent

(i) X is A—convex

(ii) X is lattice r-convex for some r > 0.

Finally, if (X, || - |X,||),J = 0,1 are quasi-Banach lattices of functions and 0 < § < 1 then
the Calderdn product X} °X? is the function spaces defined by the quasinorm

XX = it Aol X O A X 1< Lol L% £ € Xy = 0,1},

The connection between complex interpolation and Calderén products is given by

Theorem 4.4. Let (X,S, i) be a complete separable metric space, let 1 be a o—finite Borel
measure on X, and let Xo, X1 be a pair of quasi-Banach lattices of functions on (X, u).

Then if both Xo and X1 are A—conver and separable, it follows that Xy + X1 is A-convex
and [Xo, X1]o = X3 °X?0,0< 0 < 1.

As pointed out in [20] in the case of quasi-Banach sequence lattices, only one of the spaces
in 4.4 must be separable.
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4.2 Interpolation of s;:‘q)a

Now we apply Theorem 4.4 to interpolate the sequence spaces s;;f]’a. First, we have to prove,
that these spaces are A—convex. According to Theorem 4.3 it is enough to prove that they
are lattice s—convex for some s > 0. Trivially, s = min(1, p,q) works fine in both b and f
case.

Hence, it is enough to compute the Calderén products

(st a)t™ a(sgi’ma)g, 0<0<1.

The answer is given by
Theorem 4.5. Let
FlaFQERda O<p17p27q1aq2 SOO, 0<9<1 (44)

If 7,p and q are given by

1 1-46 0 1 1—-6 6
- = +—, -= +—, T=(1-0)r +0r, (4.5)
p y41 D2 q q1 q2

we get B
(prma) (shrma)’ = spga

Proof. Step 1. First, let X € s]'a and M € s};;;f}]a j =1,2 with

Nom| < Mol ™0 Neml’, TEN], me A (4.6)
We have to show that

INlspgall < [N sprgall'=" - [[X%[sgg,all’.

But this is a simple exercise on Holder’s inequality in both b and f case.
Step 2. Now we prove the reverse inequality for a = b.
To A € s77b given, we will find M € sirasb, j = 1,2 with (4.6) such that

[IAlspgdl| = [IA s ol - [[1A%]sp20, b1 (4.7)

p,q p1,q1 D2,q2

First we deal with the case p;,q; < 00,5 =1, 2.

We choose
N o =dDemlP/Pi, j=1,2, TN, me AL, (4.8)
where .
d,/:2(y )qj2 I/T']Aq] PJ" ]: 1’2’ 7€Ng’ (49)
and
/p 4
f= (X eal) L TeN (4.10)
meA

(If Ay =0 for some 7 € NI we set ¢ = 0.)
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By this choice we see that
AL [0 (32 [0 = 9P aligtt Elg-mm (1-0)—vra0 \ U
vm vrm

This proves (4.6).
To prove (4.7) we use (4.8), (4.9) and (4.10) to get

||)\J|8;§,26H _ [Z 97Tt (] ( Z Do )qj/pj] Vai [Z 2U.FqA%} 1/qj'

veNd me Al veNg

From this (4.7) follows immediately.

If max(p1, q1, p2, g2) = 0o only notational changes are necessary.

Step 3. As far as the f—case is considered, one may modify slightly the proof for sequence
spaces f; , given in [13], Theorem 8.2.

We start again with given A € s:;?f and we need to find M € S;j’,q] fy7 =1,2 with (4.6) such
that
M Ispra FIF2 N2 sp i fII° < el Ay £ (4.11)

P1,q1 P2,92

First we deal with the case ¢; < 00,7 =1, 2.
For every k € Z, let

1/q
A = {33 eR: ( Z 2ﬁ'Fq|)\vm|qum($)> > 2’“}

veNE meAQ

and
C.=1(z.m):10-—N A |Quml _NA |Qum|
k — {(l/,m) : ‘Qu,mm k| > 9 and |Qu,mm k+1‘ < B }
We note that if (7, m) & UgezCl, then Ay = 0.
We define the sequences \,j = 1,2 by
Mo = 272 ol and M= 2927 A,

where

if (7,m) € Cg, and Ao = A2 =0 if (¥, M) & UezCh.

We point out that
(1—-0)y+00=(1-0)u+6v=N0.

An easy calculation shows that

‘)\ém‘l—ﬁ . ‘)\%m‘ _ 2k[(1 0)y+04]+7-[(1—0)u+6v] |/\ ( lo+%) _ ‘)\7_|.

q
vl

71,82

In the sequel we assume that v > 0, since the contrary case follows from interchanging s}

with s722 f and 6 with 1 — 6.
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We prove that
IX]s5 £ < el Ay fI1P/7,
From this, (4.11) clearly follows.

To prove (4.12) for j = 1 we write

a1
||/\1|8§i’q?f\|—H<Z S AL ol )) L,

k=—o00 (v,m)€eCk

k=—o0 (¥

1/lh
(Z Z 2"“Al|mmmmk<x>)

L

D1

’

(4.12)

where on the second line we use the definition of the set C) and the boundedness of the

maximal operator M as described by Theorem 1.11.
We denote \
D= J G
l=—0oc

and continue

1/q1
N2 < ¢ ZXA,C\AW(x)( ) |2”1A1|%xum(x)) L,

k=—00 (v,m)€EDy,

k=—o0 (v,m)eDy,

k=—o00 veENG ;me AZ

vENE ;me AR

= Al |

The second estimate in (4.12) is similar.

sc Z XAk\Ak+1 21”( Z 2U.rq|)‘Vm|qXVm(x))
__ w1
sc ( > 2V'Tq|/\7m|qXﬁm($)> |Lp,

sc Z XAk\Ak+1(x)2m< Z QFqule'ﬂql|)\vm|qum(a:)>

/¢

|L

/a1

p1

|Lp,

O

After these preparations we are ready to present the main result of this section. Recall, that

the spaces S] ,A(Q2) were defined by (3.1) and (3.2).

Theorem 4.6. Let 7;,p;,q; for j = 1,2 be given by (4.4). Let 0 < 0 < 1 and define 7,p and

q by (4.5). Also suppose that min(qy, qp) < oc.
(i) Then

(550> Spasasblo = s5.qb-
(ii) Furthermore, if p; < 00,j =1,2,

T1,

72,00 _7Q
[spl,lh 8?32!}2][]9 - szq f

Proof. The proof of (4.13) and (4.14) follows immediately from Theorem 4.4 and 4.5.
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4.3 Interpolation properties of entropy numbers.

Now we shall discuss the connection between the complex interpolation method developed
above with entropy numbers. We use Theorem 1.3.2 from [10]. We recall that for ¢ > 0, an
interpolation couple (By, By) and b € By + Bj, the Peetre’s K —functional is given by

K(t,b, By, By) = inf{||bo| Bo|| + t|[b1| Bu|| : b = bo + by, by € Bo, by € By ).

Theorem 4.7. (i) Let A be a quasi-Banach space and let (By, B1) be an interpolation couple
of p—Banach spaces. Let 0 < 6 < 1 and let By be a quasi-Banach space such that ByN B; C
Bg C B() + B1 and

16| Bg|| < [|b|Bol|*™ - ||b| B1||® for all b€ Byn By.
Let T € L(A, ByN By). Then for all ko, ki € N,
erotk—1(T 1 A — By) < 2'Pe,~"(T : A — By)el (T : A — By).

(ii) Let (Ao, A1) be an interpolation couple of quasi-Banach spaces and let B be a p—Banach
space. Let 0 < 6 <1 and let A be a quasi-Banach space such that A C Ag + A, and

tK(t,a,Ag, A)) < ||a|A|| forall a€ A andall t>0.

Let T : Ay + A1 — B be linear and such that its restriction to Ag and A, are continuous.
Then its restriction to A is also continuous and for all ko, k1 € N,

ekork—1(T 1 A— B) < 21/”61190_0(71 : Ag — B)el (T : A1 — B).

So, we only have to verify that the complex interpolation satisfies the assumptions of this
theorem.

Theorem 4.8. Let By, By be an interpolation couple of A-convex quasi-Banach spaces and
let 0 <6 < 1. Then

(i)
|[0|[Bo, Bilg|| < ||6|Bo||'=% - ||b| B1||® for all b€ By By.
(ii) Let the functionals in B, separate the points of B;, i = 0,1. Then
t_eK(t, b, B(), Bl) < Hb”Bo, BI]HH fO’I" all b € [Bo, Bl]g and all t> 0.

Proof. Step 1. Fix b € By N By, set M; = ||b|B;|, j = 0,1 and define g(z) = M{~' M; *b.
Then ||g|F|| =1 and

M5~ M °b|[Bo, Bilol| < [19(6)[[Bo, Bilo| < 1.

This proves (i).

Step 2. One may follow [31], 1.10.3. There one may find a proof dealing with classical
complex—interpolation method and Banach spaces. Nevertheless, the proof works also for
the generalised method, as described above, and quasi-Banach sequence spaces. Especially,
the Hahn—Banach Theorem needed there still holds for all sequence spaces which come to
play. O
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4.4 Filling the gaps

Now we use the complex interpolation and its relation to entropy numbers to close the gap
mentioned in the beginning of Section 4. Namely, we are interested in those combination of
“input” parameters which satisfy

1 1 1 1
mln(ph D2, C_Il) b1 P2 max(pg, QQ)

Our main result on the sequence space level states

1 1
27"1—7“2—(———) > 0. (4.15)
+

Vl(ph(h,pz,fh) = P11 D2

Theorem 4.9. Let 7; = (rj,...,7r;) € R, 0 < pj,q; < o0,j =1,2 with

1 1
—rg—— = — > 0. 4.16
e (pl p2>+ ( )

Furthermore, let p; < oo in the f—case.
(1) Ifrl—rg—qil-i-q% > 0 then

L T1LO 72,0 - d-1)(r1—ro— L+
ex(id : sy a — s a) & kP (logk)( g ta) k>0

(ii) If r1 — ro — ql—l + qiz < 0 and € > 0 then there are constants ¢ and C, such that

_ . 1.0 7.0 _
ck™ < ep(id : sy a— s a) < C k™ (log k), k> 2.

Remark 4.10. Unlike Theorems 3.18 and 3.19, this theorem deals only with embeddings
which stay either in the b-scale or in the f-scale. We see also that this theorem closes
the gap mentioned above up to the (logk)® term. Furthermore, the estimate from below is
covered by Theorem 3.18. Hence we will concentrate on the estimates from above in the
proof.

Proof. In the proof we shall distinguish several cases. First of all, we suppose that p; < p,.

I p1 < ¢1,92 < po. In this case the condition (4.15) is empty and the result is covered by
Theorem 3.19.

II. g1 < p1 < ps < go. We start with the sub-case
1 1

Ila. Tl—TQ—q—1+q—2>0.

In this case we have

1 1 1 1 1 1
rn—To——+—> ———+———=V1(I91,Q1;pz,q2)
y41 D2 q1 y41 D2 g2

and the result is again provided by Theorem 3.19.

IIb. rl—rQ—qil+qi2§0

The second subcase IIb. introduces the log*—gap. So we fix ¢ > 0 and use the following
embedding

71,82 71,2 72,82 792,02
Sprigt® < Sprlg@ <> S,2 00 > Sy2 A (4.17)

The newly introduced indices g, ¢’ are supposed to satisfy following conditions
0<q<qg<pi<p<¢ <g< oo,
1 1 1 1 1 1

———<-—=<rn-n<-—--+te (4.18)
pr P2 q q q g
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The existence of these indices follows from (4.16) and the condition //b. Hence we may apply
the step I1a. to the middle embedding in (4.17). All the other embeddings are bounded which
gives finally
ex(id) < ck™ " (logk)*
Il ¢ < p1,q2 < pa.
We make the same splitting as in the case II. to the subcases IIla. and IIIb.
Hla. 1y =1y — -+ o > 0.
We choose 0 < § < 1 such that
1 1 1 1
7@—@——~+—>(L—QQ———)>0. (4.19)
9 Q2

and use the interpolation scheme
7,Q
Spqg @ pN
71,82 72,82
P1,Q1a' — 8?2,(120' (4'20)
72,02
Sppl /"

with corresponding equations for 7, p and q.

S

ry=(1—0)r+0r,, (4.21)
1_ 1-9 + ﬂ, (4.22)
D1 p D2

1 1-

1_1-6.6 (4.23)

q1 q g2

We have to verify that

1 1
r—ro— -+ —> ‘/i(pvqap2aQZ)' (424)
b D2

If ¢ > p, then Vi(p, ¢, p2,¢2) = 0 and (4.24) is equivalent to (4.16). (One makes use of trivial
calculation

=——— (4.25)

which follows directly from (4.22).)
11
¢ P
In both cases ¢ < p, ¢ > p we may apply Theorem 3.19 to the upper embedding in (4.20).
This leads to

If ¢ < p, then Vi(p, q,p2, q2) = and (4.24) is equivalent to (4.19).

1-6

. — r—rg—i4 L _ ri—rg— 4L
ek(zd) < C(k)m T(log k) q Q2> =ck™™ " (]()g k) a1 az

We have used the analogy of (4.25) for ¢’s and r's.

Let us also mention that the condition min(g,¢s) < oo needed to apply Theorem 4.6 is in
the case I1I. always satisfied.

In the case IIIb, r, — qil + q% <0 (= ¢ <), we use the chain of embeddings (4.17) with
(4.18) and

!

g1 < q<p, q = qo.
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Applying now the step Illa. to the middle embedding we get the same result as in the case
11b.

IV. p1 < q1,p2 < g2, p1 < pa.

As this case is dual to the the third case, we proceed in the same way.
1, 1

IVa. T’l—q—1+q—2>0.

We choose 0 < # < 1 such that

1 1 1 1
p1 P2 b2 g2

Now we apply the interpolation scheme (4.20) with corresponding equations (4.21)—(4.23).
We have to verify that

1 1
r——4+—=> ‘/l(paQap%q?)' (427)
b D2
If ¢ > p, then Vi(p, q, p2, q2) = p— — qi and (4.27) is equivalent to (4.26).
If ¢ < p, then Vi(p, ¢, p2,q2) = ; — ; + 5= — o> and (4.27) is equivalent to the condition IVa..

In both cases ¢ < p, ¢ > p we may apply Theorem 3.19 to the upper embedding in (4.20).
This leads again to

1-6
ep < c(k "(log k)" 2 q12> =ck " (logk)" " ata,

This finishes the discussion of the case IVa. as far as min(q, ¢2) < oo which is equivalent to
min(qi, ¢2) < oo. If g1 = go = 0o then we have to modify the arguments given above. In this
case there is in general no hope to identify the interpolation space [s ;1’9 a, s;;’ooa]g with the
corresponding Calderén product s7'% a. But, according to [16], IV.1.11, one embedding still
holds, namely

T8 g 5728 gl —>s

[Spl 0™ ¥ p2,00

So we may use following interpolation schema

/\ S?,Q
71,0 7"1 72,82
st a — [shoa, pl’ooa] — 82
7'15
\l Spl OO

where p and r is given by (4.22) and (4.21). Then the choice of 0 < § < 1 with

1
re—re>(1—-0)—
' 2> ( )pl

ensures that we may proceed as in the Step IIla and get the same result.

In the case IVb, r; — q% + q% <0 (= ¢ <), we use the chain of embeddings (4.17) with
(4.18) and

@ =q, p2 < ¢ < go.

Applying now the step IVa. to the middle embedding we get the same result as in the case
IIb. O
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4.5 Entropy numbers - conclusion

In the second section we have developed a strong tool connecting the function spaces
ST AR 4) with sequence spaces 5,40~ In the third and fourth section we have studied the
entropy numbers of embeddings of these sequence spaces. Finally, we combine these two
concepts and obtain estimates for entropy numbers of embeddings of function spaces.

We recall that the function spaces on domains were defined by (3.1) and (3.2).

Our main result reads

Theorem 4.11. Let Q be a bounded domain in R with d > 2. Let 0 < p1,q1,p2, ¢ < 00
with p1,py < 0o in the F—case. LetT; = (r4,...,m;) € R i=1,2.

(i) The embedding

id: S;t AQ) — Si2  AT(Q) (4.28)
15 compact if and only if
1 1
rn—re—{(———, >0. 4.29
' ’ <p1 p2>+ ( )

(ii) In that case

1

eplid: ST A(Q) = ST ANQ)) > ek (log k) VTG Ta0+ B> 90 (4.30)

P1,q1 P2,92

with ¢ independent of k.
(i) fA=AT=Bor A=A =F andri —ry — -+ L >0 then

ex(id: ST A(Q) = ST ANQ)) < ek (logh) VTG a) k>0 (4.31)

P1,q1 P2,q2

with ¢ independent of k.
(iv) fA=At=BorA=Al=F andrl—rg—qil+qi2 < 0 then for every € > 0 there is a
constant ¢, > 0 such that

er(id: ST, A(Q) = ST AN(Q) < . k™ " (logk)s, k> 2. (4.32)

P1,q1 P2,92

(v) For general A, At and

1 1 .
rn —re— (_ - _) > ‘/I(mln(plap2)a q1, D2, QQ)
b D2/ +

we get finally

1

exlid : ST, A(Q) — 572 ANQ)) < ek i (logk) VT w) g >0,
Proof. Step 1. First we give some notation. If f € S’ A(Q) then according to Definition

P1,q1
3.1 there is a function g € S7! | A(R?) such that

19/Sp 1 ARY|| < 21| £]S51 5, AQ)]]

pP1,q1 P1,q1

with ¢g|Q2 = f. We denote this function g = extf. Hence ext represents a (non-linear)
bounded operator
ext : ST A(Q) — ST A(R?).

P1,91 P1,q1
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On the other hand, the natural restriction of g € S]! . A(R?) to D'(f2) represents a linear
bounded operator denoted by trq

trg : S™

P1,4q1

ARY) = ST A(Q).

P1,q1

Step 2. To prove the first statement we introduce two diagrams which shall be of use even
later on. In the first one, we start with f € ST! ~A(2) and extend it to g = extf €

S;;,qlA(]Rd). Then we apply the wavelet decomposition to ¢ as described in 2.12. This

allows us to represent g in the form

g == Z Aym\pym. (4.33)
veNd ,mezd

In this way, we obtain a sequence A = {\yzm : 7 € Nj, 7 € Z%} € 57! a. According to

Theorem 2.12, the mapping which orders to a given function g its wavelet coefficients A (and
which shall be denoted by W) is bounded

W:S™ ARY) — s a

P1,q1 P1,q1 "

As the distribution g doesn’t need to have a bounded support, we restrict the sum in (4.33)
to those m € Z4 such that supp Uym N Q # (. Furthermore, we may always find a domain
' such that

{meZ:suppUpm NQ#£ 0} C AY, Te N

This natural restriction will be formally realised by the the operator

- . T1 Flyﬂ’
id - Spr.n@ = Spilg, @

. . 7 ,QI
Finally, given a sequence A € 5.2
wavelet sum with coefficients A\y7.

S(A\) = Z Aom Vo

vENd me AL

a’, we denote by S()\) the distribution which arise as a

Using all this information we obtain the commutative diagram

S A(Q) e, gn A(R?) Vg g ML

P1,q1 P1,q1 P1,q1 P1,q1
id, l idzl (4.34)

7 tr 7 d S 72,0
S;;anAT (Q) A . S;;;;(D AT (R ) 822412 aIT

All the operators involved are bounded, under hypothesis (4.29) the embedding id, is even
compact. This proves that the condition (4.29) is sufficient for compactness of (4.28).

To prove that this condition is also necessary, we follow the reasoning given in the proof
of Theorem 3.17. Suppose, that (4.29) is not satisfied. We shall construct a sequence
{fu} bounded in S7! ~A(Q) such that each its two different members have mutual distance
measured in S;;%AT(Q) greater than some constant ¢ > 0.

If p1 < po, we proceed in this way: for every p > y there is 7, and m,, with |7,| = p and
CQy,m, C . We set

Ju=Yo,m,, 12> .
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If p; > py, we choose for every p > y” some ¥, with [7,| = p and such that #{m € Z¢ :
CQp,m C Q} =~ 2*. Then we set

fN = Z \Ijﬁuma 1% Z ,U'”-

m:CQ;M ﬁCQ

Step 3. Till now we have used (4.34) only to prove the compactness of (4.28). But one may
use it also for the estimates of entropy numbers of (4.28). This gives

ex(idi) < cex(ids), k€N,

where the constant ¢ covers all the bounded operators ext, W, id', S and trq. This allows
us to overtake the estimate from above obtained on the sequence space level to the function
space level.

Step 4. Now we prove the estimate from below, namely (4.30). To this effect we consider
sets

BY={meZ': CQumCQ}, 7eN.

These sets form a certain counterpart to A2. There are, nevertheless, some important
differences. Ome notices that we cannot hope for a straightforward equivalence of (3.7).
Instead of that, we see that there are constants g, c; and co such that for every pu > pg the
cardinality of the set

{77 = e 2" < #(BY) < ¢, 2}

is equivalent to p?~1. Tt means that (3.7) doesn’t hold in general for all v € NI but only for
almost all 7 with |7| large enough.

Following the proof of Theorem 3.18 we have to choose two kinds of building blocks. In the
first case, we use the sequence spaces given by the quasinorm

1/
gl = (X wa)™)
|7|=p mEBf/_)

and

el = (X 2 |zﬁfxpﬁax7ﬁx-nq)1/71@(mﬁ>

7/=n me B2

To estimate the entropy numbers of

ex(id : (s5r0a), = (5rma)l)

for p > po large enough one may use the same arguments (and get the same results) as
presented in Lemma 3.13.

Hence for p > po we use the diagram (with k = u?-12#)

1.0 S
(8;]1-;(]1@)2! S]?Jﬂil,qlA(Q)

idll ingr (4.35)

(5722 al)!, 2 Sr2 . AY(Q)
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to get

ex(id: ST, A(Q) — ST AN Q) > k™ M (logk) VTG Ta) ) > 0.

P1,q1 p2,92

On the other hand, the diagram (and the choice k£ = 2*)

idll idZJV (4.36)

ol (7"2*1[,2 ) Ef;u ¢ w ST2 At (Q)

D2,92

gives B B
ex(id: )t A(Q) — S AN(Q)) > ek, k> 2.
Here B, = #(B%) for some U with || = p is chosen such that B, ~ p~12¢ 1 > py.
Step 5. The proof of (v) involves the same arguments as given in previous Steps and Theorem
3.19. O

Remark 4.12. Theorem 4.11 describes in detail the entropy numbers of
id : ST A(Q) — ST AT(Q)

P1,q1 D2,q2

if A = A!. In this case it gives (up to the (logk)¢-gap) the final answer. Let us look a bit
closer on the situation where A = B and A" = F. The estimate from below is covered by
(4.30). If ¢; < p; we may use the embeddings

ST B(Q) — ST F(Q) < S F(Q) (4.37)

P1,q1 P1,q1 D2,92

to overtake the results obtained for F' — F embedding also to B — F. If go < po, we
replace (4.37) by ) ) )

Spt o B(Q) = S22 B(Q) = Sp2, F(Q). (4.38)
But if p; < ¢; and ps < g2 (and, for simplicity, p; < ps), no trivial embedding would help.

In that case we get (4.31) only for
1 1 1 1
Tl—T'Q—(———) > — = —.
pr D2 b2 G2
In the case of A = F and A" = B the situation is similar. We may get (4.31) whenever
(4.37) is compact and p; < ¢; or py < go. If ¢1 < p1,¢2 < po and p; < py, we get the same
result only for
1 1 1 1
7‘1—7'2—(———) > — — —.
b1 P2 @1 N

4.6 Comparison with known results

As the function spaces with dominating mixed smoothness have been studied systematically
by many authors, there are also many important results on the estimates of the decay
of entropy numbers available in the literature. Here, we compare our results supplied by
decomposition techniques with those ones obtained by Belinsky [4], Temlyakov [30] and
Dinh Dung [8].
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Unfortunately, the classes of functions studied by them differ slightly from the scales S;qB (Q)
and S} F(2). Let us sketch briefly their setting. They consider 1-periodic functions of d
real variables. Hence, their domain € is fixed 2 = [0,1)%. Belinsky considered four main
scales of spaces with dominating mixed smoothness, W; , H; on the one hand and L,, Bg‘%1
on the other hand.

As far as 1 < p < oo, the space L, of periodic functions is a direct counterpart of Sg,QF Q).
Similarly, By, , is called SJ ; B(Q) in our terminology. The spaces W, defined by Belinsky
by the means of Weyl derivatives represent for 1 < p < oo the Sobolev spaces of dominating
mixed smoothness SZQF (Q) and, finally, the spaces Hlf are sometimes called Nikol’skij spaces
and have their counterpart in SZ}OOB(Q). To simplify the comparison of our results with those

one of Belinsky, we denote the spaces W, H}, L, and B | by §;2F ST B, SO F and §2o,1B.

' M p,00 Mp,2
We now quote four results of Belinsky and compare them with corresponding analogy ob-
tained by our method earlier. We set the smoothness involved to be (as in our case)
7= (r,...,7) € R? although the results are presented in a bit greater generality in [4].

Theorem 4.13. (i) Letr > 1/p—1/q, and 1 < p < q < co. Then

- ~ log®t kyr
ex(id : Sp,F = S5,F) ~ (=) . (4.39)
(ii) Let r >1/p—1/q, and 1 < p < q < oco. Then
~ ~ log® L kT _
exlid : §jooB = S9,F) ~ (=) 1o k. (4.40)
(iii) Let r > 1/2. Then
_ _ 1 d_lk r 1
exid : S5, F — 52 B) ~ ( o8 - ) log*T k. (4.41)
(iv) Let r > 1/2. Then
oF S log" "kt 4
ex(id: S B — 8% B)~ ( ) log®" &. (4.42)

Remark 4.14. We point out that according to Theorem 3.17, all the bounds for r in Theorem
4.13 are optimal. Due to Theorem 4.11, we achieved the same results as in (i), (iii) and (iv).
The embedding appearing in (4.40) corresponds to

id: S B(Q) = S2,F(Q)
in our setting. In this case, we get for

11 1 1
T_(___)>Vp’OO>Qa2 = - oy
P q i ) q max(q,2)

by Theorem 4.11 .

ex(id) < ck " (logk)dV0+2) | >
So, for ¢ > 2, our result is optimal for all possible r, but for ¢ < 2 we get the optimal result
onlyforr>%—%>%—$.
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In [30], Temlyakov obtained other important results on entropy numbers of embeddings of
spaces with dominating mixed smoothness. Using our notation, they maybe summarised as
follows.

Theorem 4.15. (i) Let r > 1. Then
ex(id : ST B — S ,B) < ck™"(log k)(@D+3), (4.43)
(ii) Let r > 0. Then
ex(id : ST, 0B — L1) > ck™"(log k) (@-D0+3), (4.44)
(iii) Let r > 1 and 1 < p,q < oo. Then
ex(id : S],F — SO, F) < k™" (log k)@= (4.45)
(iv) Let r > 0 and 1 < ¢ < oco. Then
ex(id : SpoF — Ly) > ck "(logk) @ 1., (4.46)

Remark 4.16. We discuss briefly these results. We point out, that the bound for r is always
optimal up to the case (iii). Namely, the embedding in (4.45) is compact if and only if

r> (% - %)+. The inequalities (4.43) and (4.45) are completely covered by Theorem 4.11.

But as for (4.44) and (4.46), these results are of a different nature. Namely, they deal with the
space L1(§2). This space does not fit into our scales Sy A A(€2). All the known decomposition
techniques fail to give some decomposition of this space and, therefore, no reduction to the
sequence space level is possible. The same holds for embeddings to other spaces of this kind,
especially Lo (£2).

Finally, we discuss the results obtained by Dinh Dung in [8].

Theorem 4.17. Let 1 < py,ps < 00, 0 < g < o0 andr > 0. Then we have

(i) for either r > pil and ¢ > p; orr > (]Di1 — p%)+ and q¢ > min(py, 2)
ex(id : ST B — S0 ,F) ~ k™" (log k)¢ V0370, (4.47)

(ii) and for r > (pi1 - p%)+

ep(id: Sp o F — S0 oF) ~ k™" (log k). (4.48)
The embedding (4.48) is (for p; < py) covered by (4.39) and for general p; and ps by (4.30)
and (4.31). We therefore concentrate on (4.47). In [9], Dinh Dung comments that the
conditions on r and ¢ in Theorem 4.17 ensure the positivity of the power of logarithm in
(4.47). In view of our general estimate (4.30), this should really be so. But unfortunately,
the conditions given in Theorem 4.17 do not ensure that r + % — % > (. To see that, set
pr=pp<qg<2and 0<r< % — % A closer inspection of the proof of Theorem 2 in [§]

1

o p%)+ and ¢ > min(py, 2) Dinh Dung proves actually a bit

shows that in the case r > (
weaker result, namely

ex(id: ST B — S° F) < ck"(loghk) Vtemmad), k> 2. (4.49)

P1,9 D2,2
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In this result, the power of logarithm is always positive and, therefore, no contradiction with
(4.30) occurs. We point out, that our results covers and improves (4.49) as far as the set of
parameters is concerned.

We start with p; < p;. By Remark 4.12, we get (4.47) for all r > pil — p% with 7 > % -1

if ¢ < py or 2 < py. Moreover, for r < % - % we get (4.30) and analogy of (4.32). Finally,

if r > p% — % we get (4.47) even if ¢ > p; and 2 > p,. Similar discussion may be done for

P1 > P2-
Next we present some special cases of Theorem 4.11 which were not discussed separately
yet, but which may be of some interest on its own.

Theorem 4.18. Let 7 = (r,...,r) € R?.

(i) The embedding
id: ST,B(Q) = S% . B(Q)

1s compact if and only if r > 1 and in that case

ex(id) = k™" (log k)4 D=1 k> 9,

(ii) The embedding
id : ST, 1 B(2) = Sge o B(Q)

1s compact if and only if r > 0. If r > 1
ex(id) ~ k7" (log k)4 Dr=D k> 9
and for 0 <r <1 and every ¢ > 0 there are constants ¢ and c. such that
ck™" <ep(id) < ck "(logk)s, k> 2.
(iii) Let 0 < p < ¢ < co. The embedding
id S;QF(Q) — SS’OOB(Q)
1s compact if and only if r > % — %. If in this case r > % then
ex(id) ~ k™" (log k)@ D02 | > 2,
and for % — é <r< % and every € > 0 there are constants ¢ and ¢, such that
ck™" <ep(id) < ck"(logk)s, k> 2.

Proof. The proof follows from Theorem 4.11 and Remark 4.12. O
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