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Statistical learning of materials properties or functions so far starts with a largely silent, non-
challenged step: the choice of the set of descriptive parameters (termed descriptor). However, when
the scientific connection between the descriptor and the actuating mechanisms is unclear, causality
of the learned descriptor-property relation is uncertain. Thus, trustful prediction of new promising
materials, identification of anomalies, and scientific advancement are doubtful. We analyze this
issue and define requirements for a suited descriptor. For a classical example, the energy difference
of zincblende/wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor
can be found systematically.

PACS numbers: 02.60.Ed, 61.50.-f, 89.20.Ff, 31.15.E-

Using first-principles electronic-structure codes, a large
number of known and hypothetical materials has been
studied in recent years, and currently, the amount of cal-
culated data increases exponentially with time. Targets
of these studies are, for example, the stable structure of
solids or the efficiency of potential photovoltaic, thermo-
electric, battery, or catalytic materials. Utilizing such
data like a reference book (query and read out what was
stored) is an avail. Finding the actuating mechanisms of
a certain property or function and describing it in terms
of a set of physically meaningful parameters (henceforth
termed descriptor) is the desired science. A most im-
pressive and influential example for the importance and
impact of finding a descriptor is the periodic table of the
elements, where the elements are categorized (described)
by two numbers, the table row and column. The initial
version had several “white spots”, i.e., elements that had
not been found at that time, but the chemical proper-
ties of these elements were roughly known already from
their position in the table. Interestingly, the physical
meaning of this two-dimensional descriptor became clear
only later. Below we will use an example from materials
science to discuss and demonstrate the challenge of find-
ing meaningful descriptors: the prediction of the crystal
structure of binary compound semiconductors, which are
known to crystallize in zincblende (ZB), wurtzite (WZ),
or rocksalt (RS) structures. The structures and energies
of ZB and WZ are very close and for the sake of clarity
we will not distinguish them here. The energy difference
between ZB and RS is larger, though still very small,
namely just 0.001% or less of the total energy of a sin-
gle atom. Thus, high accuracy is required to predict this
difference. This refers to both steps, the explicit calcu-
lations and the identification process of the appropriate
descriptor (see below). The latter includes the represen-
tation of the descriptor-property relation.

For brevity, we only write “property”, characterized
by a number Pi in the following, with i denoting the

actually calculated material, but we mean the materials
function(s) as well. In general, the property will be char-
acterized by a string of numbers, but here we like to keep
the discussion simple. Analogously, the multidimensional
descriptor is denoted as a vector di, with dimension Ω.
The generalization of the discrete data set {Pi,di} to a
continuous function P (d) has been traditionally achieved
in terms of physical models, or mathematical fits. Sci-
entific understanding of the descriptor d and of the re-
lationship between d and P is needed for deciding with
confidence what new materials should be studied next
as most promising novel candidates and for identifying
interesting anomalies.

In 1970, Phillips and van Vechten (Ph-vV) [1, 2] ana-
lyzed the classification challenge of ZB/WZ vs RS struc-
tures. They came up with a two-dimensional (2D) de-
scriptor, i.e., two numbers that are related to the ex-
perimental dielectric constant and nearest-neighbor dis-
tance in the crystal [1, 2]. Figure 1 shows their con-

FIG. 1: Experimental ground-state structures of 68 octet bi-
nary compounds, arranged according to the two-dimensional
descriptor introduced by Phillips and van Vechten [1, 2]. Be-
cause of visibility reasons, only 10 materials are labeled for
each structure. See the SI for more details.
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clusion. Clearly, in this representation ZB/WZ and RS
structures separate nicely: Materials in the upper left
part crystallize in the RS structure, those in the lower
right part are ZB/WZ. Thus, based on the ingenious de-
scriptor d = (Eh, C) one can predict the structure of
unknown compounds without the need of performing ex-
plicit experiments or calculations. Several authors have
taken up the Ph-vV challenge and identified alternative
descriptors [3–5]. We will come back to this below.

In recent years, the demand for finding the function
P (d) employed statistical learning theory, which is the
focus of this paper. This strategy has been put forward
by several authors in materials science [6–10], as well as
in bio- and cheminformatics (see, e.g., Ref. [11] and refer-
ences therein). Most of these works employed the kernel
ridge regression (KRR) approach. For a Gaussian ker-
nel, the fitted property is expressed as a weighted sum
of Gaussians: P (d) =

∑N
i=1 ci exp

(
−‖di − d‖22/2σ2

)
,

where N is the number of training data points. The co-
efficients ci are determined by minimizing

∑N
i=1(P (di)−

Pi)
2 + λ

∑N,N
i,j=1 cicj exp

(
−‖di − dj‖22/2σ2

)
, where ‖di−

dj‖22 =
∑Ω
α=1(di,α − dj,α)2 is the squared `2 norm of

the difference of descriptors of different materials, i.e.,
their “similarity”. The regularization parameter λ and
σ are chosen separately, usually with the help of leave-
some-out cross validation [12], i.e., by leaving some of
the calculated materials out in the training process and
testing how the predicted values for them agree with the
actually calculated ones.

In essentially all previous materials studies the possi-
bly multidimensional descriptor was introduced ad hoc,
i.e., without demonstrating that it was the best (in some
sense) within a certain broad class (see Ref. [9] for an
impressive exception). In this Letter, we describe an ap-
proach for finding descriptors for the accurate prediction
of a given property of a class of materials, where we re-
strict ourselves to ab initio data.

For the example shown in Fig. 1, statistical learning is
unnecessary, because one can determine the classification
by visual inspection of the 2D plot. In this paper, we add
the quantitative energy difference between ZB and RS to
the original Ph-vV challenge. In general, the descrip-
tor will be higher dimensional. Also the scientific ques-
tion will be typically more complex than the structural
classification. We define the conditions that a proper
descriptor must fulfill in order to be suitable for causal
“learning” of materials properties, and we demonstrate
how the descriptor with the lowest possible dimensional-
ity can be identified. Specifically, we will use the “least
absolute shrinkage and selection operator (LASSO)” for
feature selection [13].

All data shown in this study have been obtained with
density-functional theory using the local-density approx-
imation (LDA) for the exchange-correlation interaction.
Calculations were performed using the all-electron full-

potential code FHI-aims [14] with highly accurate ba-
sis sets, k-meshes, and integration grids. For the task
discussed in this paper, the quality of the exchange-
correlation functional is irrelevant. Nevertheless, we
stress that the LDA provides a good description of the
studied materials. In particular, we have computed equi-
librium lattice constants and total energies for all three
considered lattices (ZB, WZ, RS) of a set of 82 binary
materials. The full list of these materials and all calcu-
lated properties can be found in the SI and all in- and
output files can be downloaded from the NoMaD repos-
itory [15]. Furthermore, we calculated several properties
of the isolated neutral atoms and dimer molecules (see
below).

Let us start with a simple example that demonstrates
the necessity of validation in the search for descriptors.
The nuclear numbers of a binary semiconductor AB, ZA

and ZB, unambiguously identify the lowest energy struc-
ture: They define the many-body Hamiltonian, and its
total energies for the different structures give the stable
and metastable structures. Figure 2 (top) displays the
total-energy differences of the ZB and RS structures as
function of ZA and ZB. When using the KRR approach
the data can be fitted well (see SI) when the whole set is
used for learning. However, the predictive power of KRR
based on the descriptor d = (ZA, ZB) is bad, as tested
by leave-some-out cross validation (see Table I and SI).
Obviously, the relation between d = (ZA, ZB) and the
property that we need to learn is by far too complex.

For a descriptor, we consider the following properties
to be important, if not necessary:

a) A descriptor di uniquely characterizes the material
i as well as property-relevant elementary processes.

b) Materials that are very different (similar) should be
characterized by very different (similar) descriptor
values.

c) The determination of the descriptor must not in-
volve calculations as intensive as those needed for
the evaluation of the property to be predicted.

d) The dimension Ω of the descriptor should be as low
as possible (for a certain accuracy request).

Although the Ph-vV descriptor d = (Eh, C) fulfills con-
ditions a), b), and d), it falls short on condition c). In
contrast, d = (ZA, ZB) fails for conditions b) and d).

In order to identify a good descriptor, we start with a
large number M of candidates (the “feature space”) for
the components of d. We then look for the Ω-dimensional
(Ω = 1, 2, . . .) descriptor d that gives the best linear fit
of P (d): P (d) = dc, where c is the Ω-dimensional vec-
tor of coefficients. It is determined by minimizing the
loss function ‖P−Dc‖22, where D is a matrix with each
of the N rows being the descriptor di for each training
data point, and P is the vector of the training values Pi.
We emphasize that the choice of a linear fitting function
for P (d) is not restrictive since, as we will show below,
non-linearities are included in a controlled way in the for-
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mation of the candidate components of d. The function
P (d) is then determined by only Ω parameters.

The task is now to find, among all the Ω-tuples of
candidate features, the Ω-tuple that yields the smallest
‖P−Dc‖22. Unfortunately, a computational solution for
such problem is infeasible (NP-hard) [16]. LASSO [13]
provides sparse (i.e., low-dimensional) solutions by re-
casting the NP-hard problem into a convex minimization
problem

argmin
c∈RM

‖P−Dc‖22 + λ‖c‖1, (1)

where the use of the `1-norm (‖c‖1 =
∑M
α=1 |cα|) is cru-

cial. The larger we choose λ > 0, the smaller is the
`1-norm of the solution of Eq. 1 and vice versa. There is
actually a smallest λ̄ > 0, such that the solution of Eq.
1 is zero. If λ < λ̄, one or more coordinates of c become
non-zero.

Descriptor ZA, ZB rσ, rπ 1D 2D 3D 5D

RMSE 2·10−4 0.07 0.14 0.10 0.08 0.06

MaxAE 8·10−4 0.25 0.32 0.32 0.24 0.20

RMSE, CV 0.19 0.09 0.14 0.11 0.08 0.07

MaxAE, CV 0.43 0.17 0.27 0.18 0.16 0.12

TABLE I: Root mean square error (RMSE) and maximum
absolute error (MaxAE) in eV for the least-square fit of all
data (first two lines) and for the test set in a leave-10%-out
cross validation (L-10%-OCV), averaged over 150 random se-
lections of the training set (last two lines). The errors for
(ZA, ZB) and (rσ, rπ) [3] are for a KRR fit at hyperparame-
ters (λ, σ) that minimize the RMSE for the L-10%-OCV (see
SI). The errors for the Ω = 1, 2, 3, 5 (noted as 1D, 2D, 3D, 5D)
descriptors are for the LASSO fit. In the L-10%-OCV for the
latter descriptors, the overall LASSO-based selection proce-
dure of the descriptor (see text) is repeated at each random
selection of the test set.

We note that the so-called “feature selection” is a
widespread set of techniques that are used in statisti-
cal analysis in different fields [17], and LASSO is one of
them. LASSO was successfully demonstrated in Ref. [9],
for identifying the low-dimensional representation of the
formation energy of an alloy, within the cluster expansion
of the Hamiltonian. Obviously, when a well identified ba-
sis set, such as the cluster expansion, is not available for
the property to be modeled, the feature space must be
constructed differently. In this paper, we start from sci-
entific insight, i.e., defining physically motivated primary
features that form the basis for a large feature space. We
then search for a low-dimensional descriptor that mini-
mizes the RMSE, given by

√
(1/N)‖P−Dc‖22, for our

N=82 binary compounds. The property P that we aim
to predict is the difference in the LDA energies between
RS and ZB for the given atom pair AB, ∆EAB. The
order of the two atoms is such that element A has the
smallest Mulliken electronegativity: EN=−(IP+EA)/2.

IP and EA are atomic ionization potential and electron
affinity.

For constructing the feature space, i.e., the candidate
components of the descriptor, and then selecting the most
relevant of them, we implemented an iterative approach.
At first we defined primary features. These are (for atom
A): IP(A) and EA(A), H(A) and L(A), i.e., the energies of
the highest-occupied and lowest-unoccupied Kohn-Sham
(KS) levels, as well as rs(A), rp(A), and rd(A), i.e., the
radii where the radial probability density of the valence
s, p, and d orbitals are maximal. The same was done
for atom B. In addition to these atomic data, we offered
information on AA, BB, and AB dimers, namely their
equilibrium distance, binding energy, and HOMO-LUMO
KS gap. Altogether, these are 23 primary features.

Next, we define rules for linear and non-linear combi-
nations of the primary features. One can easily generate
a huge number of candidate descriptors, e.g., all think-
able but not violating basic physical rules. In the present
study, we used about 10 000 candidates grouped in sub-
sets that are used in the different iterations (see SI). A
more detailed discussion will be given in Ref. [18]. In the
language of KRR, this approach designs a kernel, here
done by using physical insight. Not surprisingly, LASSO
(and actually any other method) has difficulties in select-
ing among highly correlated features [19]. In these cases,
it is not ensured that the first Ω selected features form
the best Ω-dimensional descriptor. Although checking
correlations between pairs is straightforward and com-
putationally reasonably inexpensive, discovering correla-
tions between triples and more-tuples is computationally
prohibitive. Therefore, we adopted a different strategy:
The first 25-30 features proposed by LASSO were se-
lected and a batch of least-square fits performed (when
the descriptor is fixed, i.e. the non-zero components of
c are fixed, Eq. 1 reduces to a linear, least-square, fit),
taking in turn as D each single feature, each pair, etc.
We confirmed that this strategy always finds the best
descriptor by running the mentioned extensive search for
several different subsets of hundreds of features.

Our procedure identifies as best (i.e., lowest-RMSE)
1D, 2D, and 3D descriptors, the first, the first two, and
all three of the following features:

IP(B)− EA(B)

rp(A)2
,
|rs(A)− rp(B)|

exp(rs(A))
,
|rp(B)− rs(B)|

exp(rd(A))
. (2)

Note that, mathematically, the descriptor does not nec-
essarily need to build up incrementally in this way, e.g.,
the 1D one may not be a component of the 2D one. How-
ever, in our study, it does. The RMSE and MaxAE for
the 1D, 2D, 3D descriptors are reported in Table I. By
adding further dimensions to the descriptor, the decrease
of the RMSE becomes smaller and smaller.

We tested the robustness of our descriptor by per-
forming a leave-10%-out cross validation (L-10%-OCV).
Thereby, the overall procedure of selecting the descriptor
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FIG. 2: Calculated energy differences between RS and ZB
structures of the 82 octet binary AB materials, arranged by
using the nuclear numbers (ZA, ZB) as descriptor (top) and
according to our optimal two-dimensional descriptor (bot-
tom). In the bottom panel, seven ZB materials with predicted
∆EAB > 0.5 eV are outside the shown window (see SI).

is repeated from scratch on a learning set obtained by
randomly selecting 90% of the materials. The resulting
fitted linear model is applied to the excluded materials
and the prediction errors on this set, averaged over 150
random selections, are recorded. The results are shown in
Table I. Not only the RMSE, but also the selection of the
descriptor proved very stable. In fact, the 2D descriptor
was selected 100% of the times, while the 1D descriptor
was the same in 90% of the cases.

The errors for the 2D descriptor introduced by Zunger
(Refs. [3, 5] and SI), based on sums and absolute differ-
ences of rs’s and rp’s, are also reported in Table I. The
cross-validation error of the linear fit with our 2D de-
scriptor is as small as the highly non-linear KRR-fit with
Zunger’s 2D descriptor. However, our descriptor bears
the advantage that it was derived from a broad class of
options by a well-defined procedure, providing a basis
for a systematic improvement (with increasing Ω). Our
LASSO-derived descriptor contains physically meaning-

ful quantities, like the band gap of B in the numerator
of the first component and the size mismatch between
valence s- and p-orbitals (numerators of the second and
third component). We note that the components of the
descriptors are not symmetric wrt exchange between A
and B. Symmetric features were included in the feature
space, but never emerged as prominent and, for the se-
lected descriptors, symmetrized versions were explicitly
constructed, tested, and systematically found perform-
ing worse. This reflects that the symmetry was explicitly
broken in the construction of the test set, as the order
AB in the compound is such that EN(A) < EN(B). Fur-
thermore, we find that d orbitals appear only in the third
or higher dimension. In Fig. 2 (bottom) we show the cal-
culated and predicted ∆EAB, according to our best 2D
descriptor. It is evident that our 2D descriptor fulfills all
above noted conditions, where conditions a), c), and d)
are in fact ensured by construction.

In order to further test the robustness and the physical
meaningfulness of the identified descriptor, we performed
tests by perturbing the value of the property ∆EAB by
adding uniform noise in the interval [−0.1, 0.1] eV. The
2D descriptor of Eq. 2 was identified 93% of the times,
with an increase of the RMSE by 10% only. More de-
tails are reported in Ref. [18]. This test shows that the
model allows for some uncertainty in the measure prop-
erty. Larger noise terms, however, destroy the reliable
identification of the descriptor (see Ref. [18]). This anal-
ysis implies that the descriptor identified by LASSO con-
tains the important physically meaningful ingredients for
the prediction of ∆EAB, even though a physical model
that justifies the P (d) mapping is not transparent.

We finally comment on the causality of the learned
descriptor-property relationship. The simplicity of our
model is in sharp contrast with what is yielded by, for
instance, KRR, where as many fit parameters as ob-
served points are, in principle, necessary. As an indica-
tion of having identified a causal (physically meaningful)
descriptor for the property ∆EAB, we use the stability
of the selection of the descriptor upon both L-10%-OCV
and perturbation of the values of the property, under the
condition that the P (d) dependence has a small number
of fit parameters and a simple functional form (see Eq. 2
and SI).
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