A REMARK ON BETTER λ -INEQUALITY

JAN VYBÍRAL

Abstract

We generalize the inequality of R. J. Bagby and D. S. Kurtz [BK] to a wider class of potentials defined in terms of Young's functions. We make use of a certain submultiplicativity condition. We show that this condition cannot be omited.

Key words: Riesz potentials, Better λ -inequality, Nonincreasing rearrangement, Young's functions

2000 Mathematics Subject Classification: 31C15, 42B20

1. Introduction

The classical Riesz potentials are defined for every real number $0 < \gamma < n$ as a convolution operators $(I_{\gamma}f)(x) = (\tilde{I}_{\gamma}*f)(x)$, where $\tilde{I}_{\gamma}(x) = |x|^{\gamma-n}$. This definition coincides with the usual one up to some multiplicative constant c_{γ} which is not interesting for our purpose. Burkholder and Gundy invented in [BG] the technique involving distribution function later known as $good\ \lambda$ -inequality. This inequality dealt with level sets of singular integral operators and of maximal operator. Later, Bagby and Kurtz discovered in [BK] that the reformulation of good λ -inequality in terms of non-increasing rearrangement contains more information.

We generalize their approach in the following way. For every Young's function Φ satisfying the Δ_2 -condition we define the Riesz potential

$$(I_\Phi f)(x) = \int_{\mathbf{R}^n} ilde{\Phi}^{-1} \left(rac{1}{|x-y|^n}
ight) f(y) \mathrm{d}y,$$

where $\tilde{\Phi}$ is Young's function conjugated to Φ and $\tilde{\Phi}^{-1}$ is its inverse. Instead of the classical Hardy-Littlewood maximal operator we work with a generalized maximal operator

$$(M_{\varphi}f)(x) = \sup_{Q\ni x} \frac{1}{\varphi(|Q|)} \int_{Q} |f(y)| \mathrm{d}y,$$

where φ is a given nonnegative function on $(0,\infty)$ and the supremum is taken over all cubes Q containing x with sides parallel to the coordinate axes such that $\varphi(|Q|) > 0$. For every measurable set $\Omega \subset \mathbf{R}^n$ we denote by $|\Omega|$ its Lebesgue measure.

We prove that under some restrictive condition on function Φ one can obtain an inequality combining the nonincreasing rearrangement of $I_{\Phi}f$ and $M_{\tilde{\Phi}^{-1}}f$. We also show that this restrictive condition cannot be left out.

2. Better λ —inequality

Before we state our main result, we give some definitions and recall some very well known results about Young's functions and non-increasing rearrangements.

Lebesgue measure will be denoted by μ or simply be an absolute value. Let Ω be a subset of \mathbf{R}^n , $n \geq 1$. We denote by \mathfrak{M} the collection of all extended scalar-valued Lebesgue measurable functions on Ω and by \mathfrak{M}_0 the class of functions in \mathfrak{M} that

are finite μ -a.e. Further let \mathfrak{M}^+ be the cone of nonnegative functions from \mathfrak{M} and \mathfrak{M}_0^+ the class of nonnegative functions from \mathfrak{M}_0 . We shall also write $\mathfrak{M}(\Omega), \mathfrak{M}^+(\Omega)$ and so on when we want to emphasize the underlying space Ω .

The letter c denotes a general constant which doesn't depend on the parameters involved. It may change from one occurrence to another.

Definition 2.1. 1. Let $\phi:[0,\infty)\to[0,\infty)$ be a non-decreasing and right-continuous function with $\phi(0)=0$ and $\phi(\infty)=\lim_{t\to\infty}\phi(t)=\infty$. Then the function Φ defined by

$$\Phi(t) = \int_0^t \phi(s) \mathrm{d} s, \quad t \geq 0$$

is said to be a Young's function.

2. A Young's function is said to satisfy the Δ_2 —condition if there is c>0 such that

$$\Phi(2t) \le c \ \Phi(t), \quad t \ge 0.$$

3. A Young's function is said to satisfy the ∇_2 —condition if there is l>1 such that

$$\Phi(t) \le \frac{1}{2l}\Phi(lt), \quad t \ge 0.$$

4. Let Φ be a Young's function, represented as the indefinite integral of ϕ . Let

$$\psi(s) = \sup\{u : \phi(u) \le s\}, \quad s \ge 0.$$

Then the function

$$ilde{\Phi}(t) = \int_0^t \psi(s) \mathrm{d} s, \quad t \geq 0,$$

is called the *complementary Young's function* of Φ .

The following theorem puts these three notions together. For the proof see [KR].

Theorem 2.2. Let Φ be a Young's function and $\tilde{\Phi}$ be its complementary Young's function. Then Φ satisfies the Δ_2 —condition if and only if $\tilde{\Phi}$ satisfies the ∇_2 —condition.

We shall need following lemma.

Lemma 2.3. Let Φ be a Young's function satisfying the Δ_2 —condition. Then there is a constant c > 0 such that

$$\int_0^t \tilde{\Phi}^{-1} \left(\frac{1}{u} \right) du \le c t \tilde{\Phi}^{-1} \left(\frac{1}{t} \right), \quad 0 < t < \infty$$

Proof. If Φ satisfies the Δ_2 —condition, then $\tilde{\Phi}$ satisfies the ∇_2 —condition. It means that there is a real number k>1 such that $\tilde{\Phi}(t)\leq \frac{1}{2k}\tilde{\Phi}(kt)$ for every t>0. When we pass to inverses we get $\tilde{\Phi}^{-1}\left(\frac{1}{u}\right)\leq \frac{l}{2}\tilde{\Phi}^{-1}\left(\frac{1}{lu}\right)$, where l=2k>2 and u>0. Now setting $h(s)=\tilde{\Phi}^{-1}\left(\frac{1}{s}\right)$ and $H(u)=\int_0^u h(s)\mathrm{d}s$ we get $2h(s)\leq lh(ls)$ and integrating this inequality from 0 to t we obtain $2H(t)\leq H(lt)$. To show that H(t) is finite for all t>0, write

$$H(t) = \int_0^t h(s) ds = \sum_{k=0}^\infty \int_{t/l^{k+1}}^{t/l^k} h(s) ds \le \sum_{k=0}^\infty \int_{t/l^{k+1}}^{t/l^k} \frac{l^k}{2^k} h(l^k s) ds =$$

$$= \sum_{k=0}^\infty \frac{1}{2^k} \int_{t/l}^t h(u) du < \infty.$$

Because h is a decreasing function, we can calculate

$$lth(t) \geq \int_t^{lt} h(s)\mathrm{d}s = H(lt) - H(t) \geq 2H(t) - H(t) = H(t),$$

which can be rewritten as

$$lt\tilde{\Phi}^{-1}\left(\frac{1}{t}\right) \ge \int_0^t \tilde{\Phi}^{-1}\left(\frac{1}{u}\right) du.$$

Definition 2.4. The distribution function μ_f of a function f in $\mathfrak{M}_0(\Omega)$ is given by

$$\mu_f(\lambda) = \mu(\{x \in \Omega : |f(x)| > \lambda\}), \quad \lambda \ge 0.$$

For every $f \in \mathfrak{M}_0(\Omega)$ we define its nonincreasing rearrangement f^* by

$$f^*(t) = \inf\{\lambda : \mu_f(\lambda) \le t\}, \quad 0 \le t < \infty$$

and its maximal function f^{**} by

$$f^{**}(t) = t^{-1} \int_0^t f^*(u) \mathrm{d}u, \quad 0 < t < \infty.$$

Assume now that Young's function Φ satisfies the Δ_2 —condition. Using the classical O'Neil inequality (see [O]) and lemma 2.3 we obtain

$$(1) \qquad (I_{\Phi}f)^*(t) \le c \left\{ \tilde{\Phi}^{-1} \left(\frac{1}{t} \right) \int_0^t f^*(u) du + \int_t^{\infty} f^*(u) \tilde{\Phi}^{-1} \left(\frac{1}{u} \right) du \right\},$$

We shall derive a better λ -inequality connecting the operators I_{Φ} and $M_{\tilde{\Phi}^{-1}}$.

Theorem 2.5. Let us suppose that a Young's function Φ satisfies the Δ_2 —condition. Let us further suppose that there is a constant $c_1 > 0$ such that

(2)
$$\tilde{\Phi}^{-1}(s)\tilde{\Phi}^{-1}(1/s) < c_1, \quad s > 0.$$

Then there is a constant $c_2 > 0$, such that for every function f and every positive number t

(3)
$$(I_{\Phi}f)^*(t) < (I_{\Phi}|f|)^*(t) < c_2 (M_{\tilde{\Phi}^{-1}}f)^*(t/2) + (I_{\Phi}|f|)^*(2t)$$

Proof. We may assume that given function f is nonnegative.

First we shall estimate the size of the level set $G = \{x \in \mathbf{R}^n : (I_{\Phi}g)(x) > \lambda\}$ for function $g \in L^1(\mathbf{R}^n)$. According to (1), $|G| < \infty$. Hence we can find a real number R > 0 such that |G| = |B(0, R)|. We can write

$$\lambda |G| = \int_{G} \lambda \le \int_{G} (I_{\Phi}g)(x) dx = \int_{G} \int_{\mathbf{R}^{n}} g(y) \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^{n}}\right) dy dx =$$

$$= \int_{\mathbf{R}^{n}} \int_{G} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^{n}}\right) dx g(y) dy \le$$

$$||g||_{1} \int_{B(0,R)} \tilde{\Phi}^{-1} \left(\frac{1}{|x|^{n}}\right) dx = ||g||_{1} \alpha_{n} \int_{0}^{|G|/\alpha_{n}} \tilde{\Phi}^{-1}(1/s) ds.$$

Dividing this inequality by |G| and using the lemma 2.3 we obtain

$$\lambda \leq ||g||_1 \frac{\alpha_n}{|G|} \int_0^{|G|/\alpha_n} \tilde{\Phi}^{-1}(1/s) \mathrm{d}s \leq \tilde{c} \, ||g||_1 \tilde{\Phi}^{-1} \left(\frac{1}{|G|}\right).$$

This can be rewritten as

$$|G| \le \frac{1}{\tilde{\Phi}\left(\frac{\lambda}{\tilde{c}||g||_1}\right)},$$

where \tilde{c} is independent of g and λ .

We can now pass to the proof of our theorem which is mainly based on [BK]. For a given function $f \geq 0$ and a real number t > 0 we shall denote by E the set $\{x \in \mathbf{R}^n : (I_{\Phi}f)(x) > (I_{\Phi}f)^*(2t)\}$. Then $|E| \leq 2t$ and we can find an open set Ω ,

 $|\Omega| < 3t, E \subset \Omega$. Now using Whitney covering theorem (see [S]) we can find cubes Q_k with disjoint interiors, such that $\Omega = \bigcup_{k=1}^{\infty} Q_k$ and diam $Q_k \leq \operatorname{dist}(Q_k, \mathbf{R}^n \setminus \Omega) \leq 4 \operatorname{diam} Q_k$.

We want to show that there is a constant C > 0 such that for every f, t and for every corresponding cube Q_k

(5)
$$|\{x \in Q_k : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^*(2t)\}| \le \frac{1}{6}|Q_k|.$$

Then we would have $|\{x \in \mathbf{R}^n : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^*(2t)\}| \le 1/6 \sum |Q_k| \le t/2$ and thus

$$\begin{aligned} |\{x \in \mathbf{R}^{n} : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)^{*}(t/2) + (I_{\Phi}f)^{*}(2t)\}| \leq \\ & \leq |\{x \in \mathbf{R}^{n} : I_{\Phi}f(x) > C(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^{*}(2t)\}| + \\ & + |\{x \in \mathbf{R}^{n} : (M_{\tilde{\Phi}^{-1}}f)(x) > (M_{\tilde{\Phi}^{-1}}f)^{*}(t/2)\}| \leq t/2 + t/2 = t, \end{aligned}$$

which finishes the proof.

To prove (5) fix k and choose $x_k \in (\mathbf{R}^n \setminus \Omega)$ so that $\operatorname{dist}(x_k, Q_k) \leq 4 \operatorname{diam}(Q_k)$. Let Q be a cube with center at x_k having diameter $20 \operatorname{diam}(Q_k)$. Split $f = g + h = f\chi_Q + f\chi_{\mathbf{R}^n \setminus Q}$. We may assume that $g \in L^1(\mathbf{R}^n)$, otherwise the right-hand side of (3) would be infinite.

We shall prove that for C_1 and C_2 large enough

(6)
$$|\{x \in Q_k : (I_{\Phi}g)(x) > C_1(M_{\tilde{\Phi}^{-1}}f)(x)\}| \le 1/6|Q_k|,$$

and, for every $x \in Q_k$,

$$(7) I_{\Phi}h(x) \le C_2(M_{\tilde{\Phi}^{-1}}f)(x) + I_{\Phi}f(x_k) \le C_2(M_{\tilde{\Phi}^{-1}}f)(x) + (I_{\Phi}f)^*(2t),$$

which together gives (5).

For the first inequality, notice that for $x \in Q_k$

$$(M_{\tilde{\Phi}^{-1}}f)(x) \geq rac{1}{\tilde{\Phi}^{-1}(|Q|)} \int_Q g = rac{||g||_1}{\tilde{\Phi}^{-1}(|Q|)}.$$

Using (4) now gives

$$\begin{aligned} |\{x \in Q_k : (I_{\Phi}g)(x) > C_1(M_{\tilde{\Phi}^{-1}}f)(x)\}| &\leq \\ \left| \left\{ x \in Q_k : (I_{\Phi}g)(x) > \frac{C_1||g||_1}{\tilde{\Phi}^{-1}(|Q|)} \right\} \right| &\leq \frac{1}{\tilde{\Phi}\left(\frac{C_1}{\tilde{c}\tilde{\Phi}^{-1}(|Q|)}\right)}, \end{aligned}$$

where \tilde{c} is the constant from (4). The last expression is less then $|Q_k|/6$ for C_1 big enough (here we use (2) again).

In the proof of the second inequality we shall use two observations. The first is that

(8)
$$\left| \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n} \right) - \tilde{\Phi}^{-1} \left(\frac{1}{|x_k - y|^n} \right) \right| \le c \frac{|x_k - x|}{|x-y|} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n} \right)$$

with c independent of $k, y \in (\mathbf{R}^n \setminus Q)$ and $x \in Q_k$.

The second is that for any $\delta > 0$ and any $x \in \mathbf{R}^n$

(9)
$$\int_{y:|x-y|>\delta} \delta \frac{f(y)}{|x-y|} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n} \right) \mathrm{d}y \le c \, M_{\tilde{\Phi}^{-1}} f(x).$$

The proof of (7) now follows easily. For every $x \in Q_k$ we get

$$\begin{split} I_{\Phi}h(x) - I_{\Phi}f(x_k) &\leq I_{\Phi}h(x) - I_{\Phi}h(x_k) \leq \\ &\int_{\mathbf{R}^n \setminus Q} \left| \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n} \right) - \tilde{\Phi}^{-1} \left(\frac{1}{|x_k-y|^n} \right) \right| f(y) \mathrm{d}y \leq \\ c|x_k - x| \int_{\mathbf{R}^n \setminus Q} \frac{1}{|x-y|} \tilde{\Phi}^{-1} \left(\frac{1}{|x-y|^n} \right) f(y) \mathrm{d}y \leq \\ cM_{\tilde{\Phi}^{-1}}f(x). \end{split}$$

It remains to prove (8) and (9). Proof of (9) is a combination of definition of $M_{\tilde{\Phi}^{-1}}$ and (2).

To prove (8) let us write $\tilde{\Phi}(t) = \int_0^t \tilde{\varphi}(u) du$ and $A(t) = \tilde{\Phi}^{-1}(t^{-n})$ for t > 0. Then

$$\frac{1}{s} \int_0^s \tilde{\varphi}(u) du \le \tilde{\varphi}(s), \quad s > 0$$

or, equivalently, $\tilde{\Phi}(s) \leq s\tilde{\Phi}'(s)$ for s>0. Now we set s=A(t) and obtain

$$-tA'(t) = rac{nt^{-n}}{ ilde{\Phi}'(A(t))} \le cA(t).$$

Finally the left hand side of (8) can be estimated by

$$|A(|x-y|)-A(|x_k-y|)|\leq c\left|\int_{|x-y|}^{|x_k-y|}\frac{A(t)}{t}\mathrm{d}t\right|\leq c\frac{|x_k-x|}{|x-y|}A(|x-y|).$$

In the following example we will show that the assumption (2) cannot be omitted.

Theorem 2.6. There is a Young's function Φ satisfying the Δ_2 —condition for which

$$\sup_{f,t>0} \frac{(I_{\Phi}f)^*(t) - (I_{\Phi}f)^*(2t)}{(M_{\tilde{\Phi}^{-1}}f)^*(t/2)} = \infty$$

Proof. Set

$$\tilde{\Phi}(u) = \begin{cases} u^3 & \text{if } 0 < u < 1 \\ \frac{3}{2}u^2 - \frac{1}{2} & \text{if } 1 < u < \infty \end{cases}, \qquad \tilde{\varphi}(u) = \begin{cases} 3u^2 & \text{if } 0 < u < 1 \\ 3u & \text{if } 1 < u < \infty \end{cases}.$$

Then

$$\Phi(u) = \begin{cases} \frac{2}{3\sqrt{3}} u^{3/2} & \text{if } 0 < u < 3\\ \frac{u^2}{6} + \frac{1}{2} & \text{if } 3 < u < \infty \end{cases}, \qquad \varphi(u) = \begin{cases} \sqrt{\frac{u}{3}} & \text{if } 0 < u < 3\\ \frac{u}{3} & \text{if } 3 < u < \infty \end{cases}$$

Finally $\tilde{\Phi}^{-1}(u) = \sqrt[3]{u}$ for 0 < u < 1 and $\tilde{\Phi}^{-1}(u) = \sqrt{2/3(u+1/2)}$ for u > 1. Let n = 1. For any integer m > 0 set $t_m = 1/m$, $f_m(x) = \chi_{(0,t_m)}(x)$. Then

$$(M_{\tilde{\Phi}^{-1}}f_m)^*(t_m/2) = (M_{\tilde{\Phi}^{-1}}f_m)(0) = \sup_{0 < s < 1/m} \frac{1}{\tilde{\Phi}^{-1}(s)} \int_0^s 1 = m^{-2/3},$$

$$(I_{\Phi}f_m)^*(t_m) = (I_{\Phi}f_m)(0) = \int_0^{1/m} \tilde{\Phi}^{-1}(1/s) ds = \sqrt{\frac{2}{3}} \int_0^{1/m} \sqrt{\frac{1}{u} + \frac{1}{2}} du,$$

$$(I_{\Phi}f_m)^*(2t_m) = (I_{\Phi}f_m)(\frac{3}{2}t_m) = \int_{1/(2m)}^{3/(2m)} \tilde{\Phi}^{-1}(1/s) ds = \sqrt{\frac{2}{3}} \int_{1/(2m)}^{3/(2m)} \sqrt{\frac{1}{u} + \frac{1}{2}} du.$$

We can now estimate

$$\frac{(I_{\Phi} f_m)^* (t_m) - (I_{\Phi} f_m)^* (2t_m)}{(M_{\tilde{\Phi}^{-1}} f_m)^* (t_m/2)} \ge
\sqrt{\frac{2}{3}} m^{2/3} \left\{ \int_0^{1/(2m)} \sqrt{\frac{1}{u}} du - \int_{1/m}^{3/(2m)} \sqrt{m + \frac{1}{2}} du \right\} =
\sqrt{\frac{2}{3}} m^{2/3} \left\{ \frac{\sqrt{2}}{\sqrt{m}} - \frac{\sqrt{m + \frac{1}{2}}}{2m} \right\} = \sqrt{\frac{2}{3}} m^{1/6} \left\{ \sqrt{2} - \frac{1}{2} \sqrt{1 + \frac{1}{2m}} \right\}.$$

The last expression tends to infinity as m tends to infinity.

REFERENCES

- [BK] R. J. Bagby and D. S. Kurtz, A Rearranged Good λ-Inequality, Trans. Amer. Math. Soc.,293 (1986),71-81.
- [BG] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math., 124(1970), 249-304.
- [KR] M. A. Krasnosel'skii and Ya.B. Rutickii, Convex functions and Orlicz spaces, GITTL, Moscow, 1958; English transl., Noordhoff, Groningen, 1961.
- [O] R. O'Neil, Convolution Operators and L(p,q) spaces, Duke Math. J. 30(1963), 129-142.
- [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.