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Abstract

We generalize the inequality of R. J. Bagby and D. S. Kurtz [BK] to a wider
class of potentials defined in terms of Young’s functions. We make use of a certain
submultiplicativity condition. We show that this condition cannot be omited.
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1. INTRODUCTION

The classical Riesz potentials are defined for every real number 0 < v < n as a
convolution operators (I, f)(z) = (I, * f)(x), where I, (z) = |z|"~". This definition
coincides with the usual one up to some multiplicative constant ¢, which is not
interesting for our purpose. Burkholder and Gundy invented in [BG] the technique
involving distribution function later known as good A-inequality. This inequality
dealt with level sets of singular integral operators and of maximal operator. Later,
Bagby and Kurtz discovered in [BK] that the reformulation of good A-inequality in
terms of non-increasing rearrangement contains more information.

We generalize their approach in the following way. For every Young’s function
® satisfying the As-condition we define the Riesz potential

(ah)@) = [ 7 (2o ) S,

where & is Young’s function conjugated to ® and &~ is its inverse. Instead of the
classical Hardy-Littlewood maximal operator we work with a generalized maximal
operator
1
(Mf)@) = sup s [ 17y,

where ¢ is a given nonnegative function on (0,00) and the supremum is taken
over all cubes @) containing z with sides parallel to the coordinate axes such that
©(|Q|) > 0. For every measurable set @ C R™ we denote by |Q| its Lebesgue
measure.

We prove that under some restrictive condition on function ® one can obtain an
inequality combining the nonincreasing rearrangement of I f and Mz_, f. We also
show that this restrictive condition cannot be left out.

2. BETTER \—INEQUALITY

Before we state our main result, we give some definitions and recall some very
well known results about Young’s functions and non-increasing rearrangements.
Lebesgue measure will be denoted by p or simply be an absolute value. Let 2 be
a subset of R™, n > 1. We denote by 9t the collection of all extended scalar-valued
Lebesgue measurable functions on  and by 9%, the class of functions in 9 that
1



A REMARK ON BETTER A-INEQUALITY 2

are finite pu-a.e. Further let 9 be the cone of nonnegative functions from 9 and
M the class of nonnegative functions from My. We shall also write M(2), M+ (Q)
and so on when we want to emphasize the underlying space 2.

The letter ¢ denotes a general constant which doesn’t depend on the parameters
involved. It may change from one occurrence to another.

Definition 2.1. 1. Let ¢ : [0,00) — [0,00) be a non-decreasing and right-
continuous function with ¢(0) = 0 and ¢(c0) = limy o0 ¢(t) = o0. Then the

function ® defined by
t
= [ ots)as, 20
0

is said to be a Young’s function.
2. A Young’s function is said to satisfy the Ay—condition if there is ¢ > 0 such
that
®(2t) < c ®(t), t>0.
3. A Young’s function is said to satisfy the Vo—-condition if there is [ > 1 such
that

B(t) < 2llq>(lt), £>0.
4. Let ® be a Young’s function, represented as the indefinite integral of ¢. Let
P(s) = sup{u: d(u) < s}, s>0.
Then the function

¢
= [ wleas, e,
0
is called the complementary Young’s function of ®.
The following theorem puts these three notions together. For the proof see [KR].

Theorem 2.2. Let ® be a Young’s function and ® be its complementary Young’s
function. Then ® satisfies the Ay—condition if and only if ® satisfies the Vo —
condition.

We shall need following lemma.

Lemma 2.3. Let ® be a Young’s function satisfying the As—condition. Then
there is a constant ¢ > 0 such that

t_ 1 - 1
/<I>_1 (—)dugctcﬁ—l (—) 0<t<oo
0 U t

Proof. If ® satisfies the As—condition, then & satisfies the Va—condition. It
means that there is a real number k > 1 such that ®(t) < ﬁ@(kt) for every ¢t > 0.
When we pass to inverses we get &' (1) < l&)* (lu), where [ = 2k > 2 and
u > 0. Now setting h(s) = &' () and H(u) = [;' h(s)ds we get 2h(s) < lh(ls)
and integrating this inequality from 0 to t we obtaln 2H ( ) < H(lt). To show that
H(t) is finite for all ¢t > 0, write

t/1* o et/ gk i
/h ds—Z/ hsds<2/lk+12—kh(ls)ds:

Jik+1 ot/

_sz/ u)du < oo.

Because h is a decreasing function, we can calculate

Ith(t) > ! h(s)ds = H(it) — H(t) > 2H(t) — H(t) = H(t),
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which can be rewritten as
- 1 t_ 1
(D)2 [ o0 (2
t 0 U

Definition 2.4. The distribution function py of a function f in 9 (Q2) is given by

ur(N) = uz € Q: [f(@)] > A, A>0.
For every f € 9My(Q) we define its nonincreasing rearrangement f* by

£ = mfh (V) <8}, 0<t<oo

and its mazimal function f** by

O

¢
f**(t)=t71/0f*(u)du, 0<t< oo.

Assume now that Young’s function & satisfies the Ay—condition. Using the
classical O’Neil inequality (see [O]) and lemma 2.3 we obtain

0 e fe (1) [ rwas [ rwe (D al,

We shall derive a better M-inequality connecting the operators Is and Mj_..

Theorem 2.5. Let us suppose that a Young’s function ® satisfies the Ay —condition.
Let us further suppose that there is a constant c; > 0 such that

(2) & 1(s)®(1/s) <c1, s>0.

Then there is a constant ca > 0, such that for every function f and every positive
number t

3) (T f)*(t) < (2| F1)"(2) < ca (Mz—1 £)*(t/2) + (La| f])* (2t)

Proof. We may assume that given function f is nonnegative.

First we shall estimate the size of the level set G = {z € R" : (Isg)(z) > A} for
function g € L' (R™). According to (1), |G| < co. Hence we can find a real number
R > 0 such that |G| = |B(0, R)|- We can write

N6l = [ a< [a@ae= [ [ gw)d (2 ) e =
= fo 3 () oo <
ot [, 87 (i) o= lalhan [ 8741/

Dividing this inequality by |G| and using the lemma 2.3 we obtain

S .
1 < —].
A<l | (1/s)ds < llalld* (155

This can be rewritten as

(4) Gl < <

1
A k)
@ (am)
where ¢ is independent of g and M.
We can now pass to the proof of our theorem which is mainly based on [BK].

For a given function f > 0 and a real number ¢ > 0 we shall denote by E the set
{z € R": (Isf)(z) > (Isf)*(2t)}. Then |E| < 2t and we can find an open set (2,
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|Q| < 3t, E C Q. Now using Whitney covering theorem (see [S]) we can find cubes
Q. with disjoint interiors, such that Q = U2 ; Q1 and diam Q; < dist(Qx, R"\Q) <
4 diam Qk .

We want to show that there is a constant C' > 0 such that for every f,t¢ and for
every corresponding cube Qy

(5) {z € Qk : Ie f(z) > C(M5_. f)(2) + (Ia f)" (20)}] < %IQkI-

Then we would have [{z € R" : Is f(x) > C(Mg_. f)(z)+Ta f)*(2t)} <1/6>|Qx|
< t/2 and thus
Hz € R": I f(2) > C(Mz . f)*(t/2) + (Ta )" @0} <
<[z e R™: Iaf(z) > C(Mg-. f)(z) + (Ia f)" (20) }|+
+{z e R": (M- f)(2) > (Mg [)"(¢/2)} < /2 + /2 =1,

which finishes the proof.

To prove (5) fix k and choose z; € (R™\ Q) so that dist(zg, Qx) < 4diam(Qy).
Let @ be a cube with center at 3 having diameter 20 diam(Qy). Split f =g+ h =
xq@+ fxrm\q- We may assume that g € L' (R™), otherwise the right-hand side of

(3) would be infinite.
We shall prove that for C; and C; large enough

(6) {z € Qr : (Tag)(z) > Cr(Mg- f)(x)}| < 1/6|Qxl,
and, for every z € Qy,
(1) Ish(z) < C2(Mg-1 f)(z) + Lo f(zk) < Co(Mz-1 f)(z) + (Ia f)"(2t),

which together gives (5).
For the first inequality, notice that for z € Q)

1 llgllx
M, s1q0) Jo? T Q)
(Mg-1f)(z) > 3-1(1Q|) /Qg e-1(|Q)

Using (4) now gives
{z € Qr :(Tag)(z) > C1(Mg-. f)(2)}] <

| Cullglls :
Ha: € Qu: (Isg)(@) > @1(|Q|)H 3 (=%rar)

where ¢ is the constant from (4). The last expression is less then |Q|/6 for Cy big
enough (here we use (2) again).

In the proof of the second inequality we shall use two observations. The first is
that

. - —z - 1
o o () o () <o ()
|z —y|" lzr —y|™ |z -y |z —y|"

with ¢ independent of k, y € (R"\ Q) and z € Q.
The second is that for any § > 0 and any z € R"

(9) /y PRRAC) <i>—1< 1 )dyché_lf(m).

Hlz—y|>48 |$_y| |x_y|n
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The proof of (7) now follows easily. For every z € Q) we get
I@h($) - I@f(il?k) < I@h($) - I@h($k) <

foa ¥ (o 20) = () [ <
R"\Q |z — y|" |zk — y|™

1 ~ 1
el — -1 (—) Fw)dy <
R"\Q |z — 1y |z -y

CM&,_l f(x)

It remains to prove (8) and (9). Proof of (9) is a combination of definition of
M&,_1 and (2)

To prove (8) let us write ®(t) = fo u)du and A(t) = ®~1(¢t~") for ¢t > 0. Then
1
= / u)du < @(s), s>0
$Jo
or, equivalently, ®(s) < s®'(s) for s > 0. Now we set s = A(t) and obtain
A = < cAQ).
(A1)

Finally the left hand side of (8) can be estimated by

/Iav:c vl At )dt
| t

z—y|

|lk l'

|A(lz —yl) — A(lex —yl)| < ¢

O

In the following example we will show that the assumption (2) cannot be omitted.

Theorem 2.6. There is a Young’s function ® satisfying the As—condition for

which
sup Uaf)"(t) — (T2 f)"(2t) _
>0 (Mg f)*(t/2)

Proof. Set
B(u) = u® ifo<u<l1 5(u) = 3u? ifo<ux<l1
B $u2-1 ifl<u<oo’ pr= 3u ifl<u<oo’
Then
() 2=u?? if0<u<3 () 3 if0<u<3
u) = , = ] .
“+1 if3<u<o 4 3 if3<u<oo

Finally ® '(u) = ¢/u for 0 <u < 1 and ® ' (u) = \/2/3(u + 1/2) for u > 1.

Let n = 1. For any integer m > 0 set ¢,, = l/m Jm(x) = X(0,t,) (). Then

(Mg fm)* (tm/2) = (Mgos fm) (0) = sup % / 1 =m=2/3,

o<s<1/m @71

(To )" (tm) = (T £)0) = | " §1(1/5)as = @ / o \/gdu,

3/(2m) 3/(2m)
(To )" Ct) = (s f) Gt = [ 78 11/ \/g / Ll

/(2m) 1/(2m) u
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We can now estimate
(Iéfm)*( m) - (Li’fm)*( m)
q> 1fm m/2

1/(2m) 3/(2m) 1
m / du — / m+ —du
1 2

1
2 as) V2 _Y™mT2 :\ﬁml/ﬁ VoLt ii L
vm 2m 3

3 2 2m

>

The last expression tends to infinity as m tends to infinity. |
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