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Abstract

The aim of this paper is to study the diagonal embeddings of function spaces
with dominating mixed smoothness. From certain point of view, this paper may be
considered as a direct continuation of [8] and [6].
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1 Introduction

Spaces with dominating mixed smoothness were introduced by S. M. Nikol’skii ([4], [5]). The
simplest case on the plane R? are the spaces of Sobolev type

) < oo}, (1.1)
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where 1 < p < oo,7; = 0,1,2,...;5(z = 1,2). The mixed derivative
dominant part here and gave the name to this class of spaces.

gila > plays the
These spaces were studied extensively by many mathematicians. We quote Amanov ([1]),
Schmeisser and Triebel ([7]) to mention at least some of them. We describe some aspects of
this theory necessary in the sequel in Section 2. Sections 3 and 4 are devoted to the study
of the trace operator

T : f(xq,22) — f(x1,27). (1.2)
In [8] Triebel proved that, for 1 < p < oo, the trace operator (1.2) is a retraction from
SI(:{’TQ)B(RQ) onto By (R), where ¢ = min(ry,ry, 71 + 75 — —) > 0. The g-dependence was
studied in [6]. Rodriguez proved that (1.2) is a retraction from S5a" B(R?) onto B? (R),
where

1 1
O<p§oo,0<q<oo,g>ap:max<——1,0) and min(ry, ) # —.
p p

In the ”limiting case” min(ry,re) = % the same result is proven for ¢ < min(1,p).

We fill some of the minor gaps left open by Rodriguez in the B-case and study the trace oper-
ator in the context of F-spaces. As these include the spaces of dominating mixed smoothness
of Sobolev type (1.1), we answer the question of their traces on the diagonal.

I would like to thank to prof. Sickel and prof. Triebel for valuable discussions on this topic.



2 Notation and Definitions

As usual, R? denotes the d—dimensional real Euclidean space, N the collection of all natural
numbers and Ny = N U {0}. The letter Z stands for the set of all integer numbers and C
denotes the plain of complex numbers.

If ,y € RY, we write z > y if, and only if, z; > v; for every i = 1,...,d. Similarly, we define
the relations © > y,z < y,x < y. Finally, in slight abuse of notation, we write x > \ for
reERINERIf; >Ni=1,...,d

When a = (a,...,a4) € Nd is a multi-index, we denote its length by |a| = Z?:1 aj.

Let S(R?) be the Schwartz space of all complex—valued rapidly decreasing infinitely differ-
entiable functions on R%. We denote the d—dimensional Fourier transform of a function
o € S(R?) by ¢. Its inverse is denoted by ¢V. Both ~ and v are extended to the dual
Schwartz space S’(R?) in the usual way.

We recall the basic aspects of the theory of function spaces used in the sequel. We don’t
mean to give some extensive survey on various decomposition techniques. Especially, as
far as the standard Besov (Bj ,(R?)) and Triebel-Lizorkin (F; (R?)) spaces are considered,
we use the references [9] and [10]. Furthermore, we give the definition of function spaces
with dominating mixed smoothness in general dimension. Setting d = 1, one gets the one-
dimensional version B; (R) or FJ (R), respectively.

Let ¢ € S(R) with

DN W

o) =1 if | <1 and o(t)=0 if [¢> (2.1)

We put ¢g = ¢, ¢1(t) = p(t/2) — ¢(t) and
pi(t) = e1(277%1), teR, jeN.

For k = (ki,...,kq) € Nd and & = (2y,...,74) € R? we define @r(x) = g, (21) - - - op, (Tq).
Then, since

Z ¢r(r) =1 for every z € R? (2.2)

keNd

the system {W}EeNg forms a dyadic resolution of unity with the inner tensor product struc-
ture.

Definition 2.1. Let 7 = (rq,...,7y) € R% 0 < ¢ < o0.
(i) Let 0 < p < co. Then S;  B(R?) is the collection of all f € S'(R?) such that

_ - _ A / - A
17155, BE = (3 257N esd 1L @N) " = 127 (el (LI (23)
keNg

is finite.
(i) Let 0 < p < oo. Then S} F(R?) is the collection of all f € S'(R?) such that

11155, @11, = || (32 127 (aeh) 1) 1o | = 127 (eeh VLol (20

keNg

is finite.



Remark 2.2. Sometimes, we write ST A(R?) meaning one of spaces S}  B(R?) or ST F(R?).
As mentioned above, by setting d = 1, we get By (R) = S5 B(R) and Fs (R) = SE)VF(R).
If we replace in this case the factor 2% by (k+1)*2% o € R, we get the spaces of generalised
smoothness A (R). We refer to [3] and references given there for details.

Our approach uses the full power of several decomposition techniques developed for these
function spaces in [9], [3] and [12]. They all work with sequence spaces associated to these
function spaces.

For 7 € N¢,m € Z% we denote by Qpm the cube with the centre at the point 277m =
(27" my, ..., 2 %my,) with sides parallel to the coordinate axes and of lengths 27%1 ... 274,
We denote by xzm = X+ the characteristic function of Qy# and by ¢ Qp# we mean a cube
concentric with Q7 with sides ¢ times longer.

Definition 2.3. If 0 < p,q < 0o, 7 € R? and
A={\m€C:7e Nl mez} (2.5)
then we define
— — T.(F_1 a/p 1/a
sh.b = {)\ L[| A|sT bl = <Z o7 ( m(z |Am|p) ) < oo} (2.6)
vENG meZd
and

ot = 2 =[[( 2 3 et e

veNd mezd

‘ < oo} (2.7)

with the usual modification for p and/or ¢ equal to oc.

Remark 2.4. We point out that with A given by (2.5) and gz(x) = Z AomXom(T), we

mezd
obtain
[AIspdll = 11277 golba(Lp)ll, [[Alspef 1| = 11277 gzl Ly (€0)] -
Definition 2.5. If 0 < p,qg < o0, r,a € R and
A={\n€C:peNyneZ} (2.8)

then we define

(r,c) (r,0) ageu(r—1)g ) a/p\ /4
B = Sx IG = (30 (et 12223 nl?) < 00 (2.9)
neNo nez
and
1/q
g = {3l = || (2 S+ 02 0 ) 00| <00} 210

neNg nez

with the usual modification for p and/or ¢ equal to oco.
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Next we briefly describe the atomic and subatomic decomposition. We refer to [11] and [12]
for details. Compared to the situation there, we now concentrate on the "regular” case,

op = max(% -1, 0) in the B-case

> (2.11)

Opg = max(@ -1, 0) in the F-case.

Definition 2.6. Let K € N¢ and v > 1. A K-times differentiable complex-valued function
a(x) is called K-atom related to Qym if

supp a C YQum, (2.12)

and _ _
| D% ()| < 2%7 for 0<a<K (2.13)

Theorem 2.7. Let 0 < p,q < oo, (p < oo in the F—case) and 7 € R? with (2.11). Fiz
K € N¢ with

K; > (14 [r])+ i=1,...,d. (2.14)
Then f € S'(R?) belongs to Sy ,A(R?) if, and only if, it can be represented as
f= Z Z Nomaym(x),  convergence being in  S'(R?), (2.15)
veNd mezd

T

g Furthermore,

where {apm(2) }pend meza are K -atoms related to Qpm and \ € s

inf A7,

where the infimum runs over all admissible representations (2.15), is an equivalent quasi-

norm in S} A(R?).
Definition 2.8. Let ¢ € S(R) be a non-negative function with

suppy) C {t € R: [t| < 2?} (2.16)
for some ¢ > 0 and

d p(t—n)=1, teR (2.17)

ne”Z

We define W(x) = (x1) - ... (xy) and WP (x) = 2PV (z) for = (21,...,74) and 3 € N.
Further let 7 € R? and 0 < p < co. Then

(Ba)pm(z) = VP(2"r —m), TeNi meZ? (2.18)
is called an [-quark related to Qzm.
Theorem 2.9. Let 0 < p,q < oo (with p < oo in the F-case) and T € R? with (2.11).

(i) Let
A={N:BeN} with ¥ ={)N_ecC:veN mez}

and let 9 > ¢, where ¢ is the number from (2.16). Then f € S'(R?) belongs to S;qA(Rd) if,
and only if, it can be represented as

f= Z Z Z )\gm(ﬂqu)gm(x), convergence being in  S'(R?), (2.19)

BeNd veNd mezd



where (Bqu)ym(z) are B-quarks related to Qum and

sup 29‘ﬁ|||)\ﬁ\szan < 0.
BeNd

Furthermore,
inf sup 29‘ﬁ|H)\5|sgan < 00,
BENE

where the infimum runs over all admissible representations (2.19), is an equivalent quasi-
norm in Sy A(R?).

Remark 2.10. According to [9], [10] and [3], similar decomposition theorems are available
also for spaces AS:(R). They may be obtained from Theorem 2.7 and Theorem 2.9 by
setting d = 1 and replacing S}  A(R?) with AP)(R) and sy 4@ With ali

Lemma 2.11. Let 0 < p < 00,0 < ¢ < 00,7 € R? and 71,7, > 0. Let

>y, TENI meczl (2.20)

Eym C 11Qum;

Then o .
H 27" Mol x o () }Lp(gq)H% ||>“8;,qf||

with constants of equivalence independent of .
Proof. We follow closely [2]. Namely, from (2.20) we see that
XEym (%) < ¢ MXQy(w), # €R
and o
Xy (T) < c My, (z), =€R%
Here M = M, o M, where

x1+s

1
(M1f>($) - SuIO) g ‘f(ta 1’2)‘(:115, Tr = (1’1, l’g) € R27 (221)
> Tr1—S
and similar for M,.

Then we take w > 0 such that w < min(1, p, q) and observe

27 el ) L) |= 1] 27 Pt xm () [ L (02) |7

with a direct counterpart for [|A|s], f|[. This, together with the boundedness of the maximal
operator M (see [7] or [12] for details) finishes the proof. O

By I' = {(t,t) € R? : t € R} we denote the diagonal of R?. As T' is isomorphic to R, all the
function spaces considered so far may be taken over from the real line to I'. In the natural

sense, we get AT (R) = AU(I) for all admissible a, p, ¢ and .

Finally, we discuss the notion of the trace. The trace operator T'f, as it is described in (1.2),
makes sense only when the function f satisfies some regularity conditions, especially, if it
is continuous. This is satisfied for f € S} A(R?) with 7 > %. To avoid this restriction, we

>



use the following general definition of the trace. It is well known that SJ , B(R*) — C(R?).
So, for f € S% ,B(R?), we may define (trp f)(t) = f(t,t). If S(R?) is a dense subspace of
Sy JA(R?) and trp satisfies the inequality

[l tre fIX (D) < cllf1S; AR, f € S(R?), (2.22)

for some quasi-Banach space X(I') — S’(R), then there is a unique extension operator
trp : 5]  A(R?) — X(T'). It turns out that this defines the trp f for all f € S]  A(R?) with
max(p,q) < oo and 7 = (r1,79) with 7 large enough and this definition does not depend on
X(T). In the last case, ¢ = co, we use the embedding S}  A(R?) — S} °A(R?), with € > 0
small, which defines trp f as soon as the trace operator is defined on S;7°A(R?).

We write trp @ Sy A(R?) — X(I), if (2.22) is satisfied for all f € ST A(R?). The symbol
trp Sy, A(R?) = X(T') is used to denote that trp : Sy A(R®) — X(T') and, moreover, there is
an (linear, bounded) extension operator ext : X(I') — S7  A(R?) such that trpoext = id.
Hence trp S] (A(R?) = X(T') if, and only if, trp is a retraction from S] A(R?) onto X (T').

3 Traces of B-spaces

Theorem 3.1. Let 0 < p,q < 0o, and T = (r1,12) € R? with
. 1

0<ri<rq,0= m1n<r1,7’1 + 1y — —> > 0p.
p

If ry # zlv or 79 = 110 and ¢ < min(1,p) then
trp S B(R?) = B2 (T).

If ro = =, 1 < min(p, q) then

1
p

(Tlvl_l)

trp ST B(R2) = Byg® ().

Finally, if ro = %, p < min(1,q) then

1_ 1

trr ST B(R%) — Bya's ?(I)

and
(r1 7min(% —1,0))

ext : Bpg (T) — 5] B(R?).
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Proof. Step 1. - quarkonial decomposition, definition of trr f
Let f € 5] B (R?). According to Theorem 2.9, f may be decomposed as

F=>1% ) =) > N.(Bamx) (3.1)

BeNZ veNE meZ?
with
sup 2971||A\7|s, bl| ~ |1 155, BR)]|- (3:2)
BENZ

We point out that we may assume that the coefficients A\ of the optimal quarkonial decom-
position (3.1) depend linearly on f. We refer again to [10] and [12] for detailed discussion of
this effect.

Naturally, we define

te f = 3 (b s, (e Do) = D D M

BeNE vENZ meZ?

T\
3\

t,1). (3.3)

In (3.3) we may restrict to m from

= {m € Z* : supp(Ba)ym NT # 0}.

Next we split

> = Bon (3.4)

nez
such that
sup | By, | < 00 (3.5)

and, for p = max(vy, 1),
{t: (Pa)ym(t,t) #0} C (27"(n—¢),27"(n+¢)), M€ By, (3.6)

for some fixed constant ¢ > 0.



Using this new notation, we rewrite (3.3).

(trr f)g Z Z Z Z Agm(ﬂ@)

#=0 nez DENZ meBp B=
max(l/l,l/g):u

T =2 D Aol

veNZ  meBpn
max(vi,v2)=p

’Yun ,u,n (37)

N
SI

o
N

ne

where

We have to prove that
1. af, are atoms according to Definition 2.6, for d = 1, related to (i, n).
2. [0 Il < 271N sy bI, vesp. |16 | < 271V | (%)
3. trp f defined by (3.3) coincides with the trace operator introduced in Section 2.

It is easy to prove the first statement. The support property (2.12) follows directly from
(3.6). Also the second property (2.13) is satisfied (up to some constant which depends only
on ¢ from Definition 2.8). To prove the third statement, consider f € S5 ;B(R?). Then
N e s b for every 3 € N and the series in (3.1) both converge uniformly on R?. So, for
f € S%,B(R?), trp f defined by (3.3) coincides with the trace operator of Section 2. Using
density arguments, this may be extended to all f € S B(R?).

So, in the following we concentrate on the proof of ().

This will finish the first part of the proof, namely the existence and boundedness of the trace
operator trp : S] ,[B(R?*) — B2 (T'). To sece that, denote w = min(1,p, q) and write

[[tre f1BE, (DI < Y MI(ter sl BE(D)Y < e Y 17710811

BENZ BENZ
<Y 29NTST bl < e sup 297 NPT B[ < c|| 15T, B(R?)]]~.
BEN2 BENG

Step 2. - Proof of (&). We take 3 € N2 fixed and suppose, that the sequence
N =X={\m:VeEN;,mME By}

is given. Then we set

Yun = Z Z |)\vm‘, uwe Ny, nez.

VeNg mEBﬁ n
max(v1,v2)=p

We recall (3.4) for the relation of By, and B;.

Finally, we denote

a(7) = max(vy, o) <g — 1) —U- <F — 1) (3.8)

p p
and
% — m, if ry= % and ¢ > min(1,p),
0 in other cases.



Next, we point out that, if o = rq,

1 1
() = va(ry — 7’2)1 —vi(r =) < —vi(r2 — ) for 11 <, (3.10)
—vy(re — ;) for vy > vs.
and, for o =11 + 1y — g
— <0 f <
a(?) = (vo —v1)(r — ) = or v X by, (3.11)
(v — ) (ry — p) <0 for vy > 1y.
The estimates (3.10) and (3.11) play a crucial role in the following calculations.
We need to prove that
{3 (1 + 1)724C 20 < e || Do 6276, (3.12)

where £, and ¢, on the left-hand side denotes sequence spaces with one-dimensional summa-
tion and the same symbols stand for sequence spaces with two-dimensional summation on
the right hand side.

If p <1, then

PIETED DEND DEND DRPCHEI DR i NN CRE)

And if % <1(= (=0), we get immediately,

iQﬂ(Q— <Z %m) < f: u(e—3)a Z < Z |)‘§m p)g'
=0 neZ pu=0 DENZ meE By

max(v1,v2)=p

This, together with (3.8)—(3.11), finishes the proof of (3.12) for 0 < ¢ < p < 1.
If p<1and % > 1, we get by (3.13) and Holder’s inequality

q

o0 oo q
S () < S I S o) <
u=0 nez u=0 DENZ me By

max(v1,v2)=p

S L FOIHE pen)) (X 20D
p=0

DENZ meBy DENZ
ma.x(yl,zxg):,u max(yl,zxg):u
Here ()" = -L is the conjugated index to .
P q—p P

So, if ry # %, then § = 0 and, according to (3.10) and (3.11), the last sum is uniformly
a/p

bounded and the result follows. If ry = }D, the last sum is < ¢ (u+ 1)@ =c(up+1)7 =
(u+1)77



Next we consider p > 1. From (3.5) we get

S Peml<c (X oml)?,  neZ veN (3.14)

meBy,, meEBy,

g

Ay n

i(ﬂ_,_l)ﬁqzu(e—;)q(ZWﬁn)g i(ﬂ‘i‘l Baoule— (Z( Z a,,n> )Z <

n=0 nez p=0 nez I/EN2
max(v1 ,Vg):u

S urrreb( Y (T ). 6

u=0 ,/ENQ neZ
max(v1 ,Vg):u

where in the last step we have used the Minkowski’s inequality (p > 1).
If g <1(= p =0), we may estimate the last expression from above by

Sttt Y () = S Y k)’
p=0 max(vyell\:i)::ez TENZ me By

As a(7) <0 for all 7 € N2, this finishes the proof.
If ¢ > 1, we continue in (3.15) using Hélder’s inequality.

LHS(3.15) <> (u+ 1)ﬁq< 3 23-(?—%)—4—04(3)(2 agn)%y;
#=0 I nez
max(v1,v2)=p

<SS Y 2N e ) (D 200
u=0 DEN? nez vENZ
max(yl,ug):,u max(ul,ug):u

8

2
Y

If now ry # %, then the last sum is uniformly bounded for all ;1 € Ny and we get the desired
estimate. If rp = > we get the same estimate with additional factor (1 + 1) L=(p+1)77
Step 2. - extenswn operators

In this step we prove the boundedness of the corresponding extension operators.

We fix f € B2 (') (or f € B;g(} )(F), respectively). Then it may be decomposed into

quarks
f= Zfﬁ—ZZZA (Ba)

B=0 p=0 neZ
where the coefficients {AWL} depend linearly on f and belong to the corresponding sequence

space bg  or bpq* . Moreover,

sup 27| |\ |67 &~ || F| B (R)]|
BeN

10



with constants independent of f.
We define

B («T €T ) = (6W)y1,m1(1'1)h(2y2($2 - 2_V1ml))a ) S Vi, Mo = [21/2—l/1m1 + %]
v v ) .m 1y 42 v -V vi—v
(v1,v2)(m1,m2) (ﬁCp),}Z,mQ(l"Q)h(Q 1(;51 -2 ng)), vy < Vo, My = [2 1="2mq + %]a

where h € S(R) with h(t) =1 for |t| < 2¢ and h(t) = 0 for |[t| > 29! and ¢ is the constant
n (2.16). This definition ensures that 2-¢%a’_ are K-atoms for every fixed K € N2 up to
some constant which depends only on the function ¢ involved in the definition of quarks and
K.

If now ry > % or ry = % and ¢ < min(1,p) then {X’ 1 € b7l with supgey, 27| A7 || <
c|f1B)L(R)[|. We define

B )\6

’Y(M,O)(n,[Q—Hn—i- uns HENg, neZ (3.16)

and zero otherwise. Finally we set

ext f = Zextfﬁ—zz S ol (317)
B=0 peN2 meZ?
and observe that for w = min(1, p, q)

lext £187, BRI < 3 [lext 715} BERA[® < €3 2%17|sp b1
£=0 B=0

a/p\ “/?
< ¢ sup 2pﬁ‘“||75\sp Dl =c sup opBw (Z 2" <Z P ) ) (3.18)

AeNo vENZ meZ?
1 a/p\
— ¢ sup 2% 22“ : (Z I\ n\l’) (3.19)
BENo nez
= ¢ sup 2”ﬂ“’||>\ﬁ|b;fq||w < || f|Bpg(R)][*-
BENo

Furthermore, the definition of al— ensures that troext f = f
The case ry < %D follows the same scheme. We define
oo = Moms HEN, nezZ (3.20)

Twp)(n, o

and 72 = 0 otherwise. We get now similarly to (3.18)

1/q
’ vrm

vENZ mez?
(112 1/q
(Z?“” (X r) ) = (V710711
nez

11



Finally, in the case ro = %,q > 1 and g > p we set for 0 < vy < g
(M,I/Q)(TL,ﬁ) Ky

1
o = (u+1)7N A =[2722 7+ )

and zero otherwise. Then we get for § = % —1

, L a/p\ /4
sl = (29X 1))

veN? mez?

S gu(ri—1) 1 a/p\ V1

pn=0 nez

4 Traces of F spaces

Theorem 4.1. Let
O<p<oo, 0<g<oo, 0<r<ry

with .
0= min(rl,rl +ry — 5) > Opg-
Ifro > 1% then
trp S) , F(R?*) = F2,(T).
If ry < % then
trp S F(R?) = F2,(I') = B2 ().

If ro = = and p < min(1, q) then
trp Sy F(R?*) = F7L(T).

If ro =

D=

and ¢ < p <1 then
trp 5] F(R?) = F7L(T).
]f’f’gzi and 1 < p < q then

(Tlvé_l)

trp : Sy F(R?) — Fpg (I).
Finally, if ro = % and p > max(1,q) then

trp s ST F(R2) — Fyy (D).

12
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Proof. We recall our task. We use again the notation (3.1)-(3.13).
We suppose, that the sequence

A= {)\§7m:§6 Ng,mE BU}

Tun = Z Z |)\vm|- (47)

VeNg mEBg n
max(v1,v2)=p

and recall (3.4) for the relation of B,,, and By. We need to prove that (r, > %)

is given. Then we set

{vunt gl < cll{ Ao}y o (4.8)
or (ry < %)
r1+7r F
H{vund o e c|[{Aom s f|l (4.9)
respectively.

We split (4.7) into two parts,

o
=Y > Pwmml,  wa= Z > N (4.10)

vo=0 WGB(M,Q)’,” V1= OmEB(ul w),n

and prove (4.8) and (4.9) for both these parts separately.
Step 1.

We start with the case ry > %. We recall the definitions of sequence spaces involved in (4.8)

and obtain
1t = [ (2 3 2 i)l
pn=0 nez
and
$1+1
Ao sy o fIIF = 0/ / Z D 127 Amxmm (1, 22)|? ) dwydy.
1 DEN2 MEBy

13



So, to prove (4.8) for V). it is enough to prove

r

<i2|2ur17;81729(un(331)|q) / (Z Z |2Vr)\ vm($1,$1+$2)|q>qu2 (4.11)

=0 neZ yeNQ meBy

for every fixed x;.

Finally, we try to change the notation in such a way that we could switch from integrals to
sums. With x1 being fixed, there is only one n = n(p) such that x,,(z1) = 1. We denote

vﬁ) = me . So, the left hand side of (4.11) reduces to

<Z |2ur1%€1)|q) “

pu=0

Finally, as a direct corollary of (3.5), we may suppose, that each By, contains only one
element. So, to every u € Ny and every vy < p there is a unique m = (1, v2) € B(uus) n(u)-
We denote A,y = A(us) m(uve)-

We reformulate once more our task. We start with a given sequence
A={\ TN v > 1},

and define

I
T = Z A |

vo=0

Finally, we use the Lemma 2.11 and choose the sets Epm such that E,.,)muw,) and
By muwy) are disjoint for vy # v5.

X2

R s
i Attt b
- A

" Ego)

It turns out, that it is enough to prove that

<§:|2‘”1w\ ) <e¢ 22 ]<Z‘2W1“”Am,ﬁ\q)

pu=0 H=j

ESYLS]

(4.12)
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with ¢ independent on the starting sequence A. We just mention, that the j—sum comes
from decomposition of the integral in (4.11) according to the supports of Xz involved.

First we discuss the case ¢ < 1. In that case,

© ©
vo(ro—1
YD Pguaml? <) 220N 9

vo=0 v2=0

If moreover % <1,

SRiS]

(Z ) < (Z pma 3 iy, i)

vo=0

(S 5 )

v2=0 U=vs9
o0 o0
<e 3 (30 1 Al
v2=0 U=vs9
This proves (4.12) for p < ¢ <1 and ry > %.
In the case ¢ < 1,q < p we denote

SRS

SR

oo

b, = Y 12 A |-

p=r2

By this notation, the right-hand side of (4.12) may be rewritten like

RHS(4.12) =Y 277 (2”2’”2%32)5 = 3" el yn
vo=0 vo=0

and the left-hand side may be estimated by

Z|2un (1) 5 Zb 5.

vo=0
This (and Hélder’s inequality) finishes the proof of (4.12) for ro > % and ¢ < 1,q < p.
Next, we take ¢ > 1. Wedenoteﬁz—izl—lifm:%andﬁinfr2>%.

q
By Holder’s inequality we get

" 1
< elus (ST e,
vo=0
Hence, for p < g,
e’} 00 I P
(Z('M + 1)ﬁq2ur1q,y )E <c (Z QN1 Z 21/2(7"2—%)(1‘)\”7”2‘11) q
n=0 u=0 vo=0
= (Do 3 )
vo=0 =%
<e 32 (L2 )
vo=0 =%
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This finishes the proof of (4.12) for max(p,1) < ¢ and ry > %D. But for ry = %D this also

proves the generalisation of (4.12), where 2# is replaced by (u + 1)#2#" on the left-hand
side. Hence, also the boundedness of the trace operator in (4.5) follows.

For p>¢q > 1 and 7“2—%>€>0we get similarly

H 1
Vu <c (Z 2V2(T2—%_5)Q|)\M’V2|q) a
vo=0
and
(Somnag) oSt ) <o 3 (2’
pn=0 vo=0 vo=0

This finishes the boundedness of the trace operator for ry > %. In the case of o = %, we have
only discussed the cases p < ¢ < 1and 1 < p < ¢q. To complete the proof in those cases,
where the result depends on ¢, we consider p < 1 < q. We get by Minkowski’s inequality

(Z 2“7"1q Z |>\W,2 ) < (i(i 2W1q|)\(“7y2)‘q)%)p

vo=0 vo=0 pu=vso

< Z <§: 2”’"1’1M(u,u2)lq)§ = RHS5(4.12).

vo=0 p=v2

Finally, to prove the boundedness of the trace operator in (4.4) and (4.6) we use the embed-
ding
Sy F(R?) — ST B(R?),
which holds for ¢ < p, and Theorem 3.1.
Step 2.
Next we discuss the remaining case 0 < r; < ry < %, 0=11+71y— % > 0pg-

We now need to prove (4.9). We introduce again the same notation as in the Step 1. and

replace (4.12) by
D2 s e 32t (o) .13
n=0 j=0 u=j

Finally, we prove (4.13) for all 0 < ¢ < oo if we prove it for ¢ = co. We denote

ay,, = Sup 2’”1‘)\(%,,2”, vy € Np.
H>v2

Then the right-hand side of (4.13) may be (for ¢ = 0o) rewritten as

RHS(4.13) =c¢ Z 2772 (sup 2¢7 2|6, L) = ¢ Z 2TvEtaTR gl |

n>va

v2=0 v2=0

As for the left-hand side in (4.13), we get for p < 1

LHS(4.13) ZQMQP Z Apnl? = i i 2P|\, P < e i ova(ra=3)p p

v2=0 v2=0 p=vs vo=0
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Forp>1Wedenotee:%—r2>0andget

LHS(4.13) szp ”6p<22” 22y, )

vo=0

< Z 1P ’“p Z o(u—v2 pﬁ/Q‘)\ (Z 2_(N—V2)p/6/2)p/pl

vo=0 vo=0

<c Z Z Qurlp—ueer(u—Vz)pE/?‘)\W/Q‘p

vo=0 pu=vo

o o0 o0
<c E :2—u2pe/2a€2 E Q—Hep+pipe/2 <c § :2_”261”&52.

v2=0 U=vs9 v2=0

This finishes the proof of (4.8) and (4.9) for v™. One could follow the same arguments also
for v, Alternatively, to a given sequence

)\:{)\yivéNg,l/l S 1/2}
we consider a sequence
)\:{)\yivéNg,l/l 2 1/2}

defined by A, 1s) = Awam) and use (4.12) for ¥V associated with A. In this way, we prove
(4.8) and (4.9) for ¥ and finish the proof of boundedness of the trace operator.
Step 3.

Next, we consider the corresponding extension operators. We use the same operators as in
the B-case. The first one (given by (3.16) and (3.17)) gives an extension operator in the case
ro > %. To prove the corresponding inequality on the sequence space level, we again fix x;
and prove a pointwise inequality, which now reduces to trivial

(Z 2/”“111 Z |’yu V2 )p/q _ (Z 2ur1q‘)\u|q)p/q.
Vo= =0 “:0

The same operator proves also (4.3).

The second operator, characterised by (3.17) and (3.20) gives an extension operator for
re < % and in (4.4). We omit the trivial calculation. O
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