Traces of Functions with a Dominating Mixed Derivative in R?

Jan Vybiral and Winfried Sickel

November 4, 2005

Abstract

We investigate traces of functions, belonging to a class of functions with dominating mixed
smoothness in R3, with respect to planes in oblique position. In comparison with the classi-
cal theory for isotropic spaces a few new phenomenona occur. We shall present two different
approaches. One is based on the use of the Fourier transform and restricted to p = 2. The
other one is applicable in the general case of Besov-Lizorkin-Triebel spaces and based on atomic

decompositions.
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1 Introduction

Sobolev spaces with dominating mixed smoothness S;W(Rd) have been introduced in 1962 by
S.M. Nikol’skij, see [Nil, Ni2], originally in connection with some partial differential equations.
Later on there has been some interest in these type of spaces as special cases of vector-valued Sobolev
spaces (Sy""W(R?) can be interpreted as an iterated version of the Sobolev spaces W, (R)), see
Grisvard [Gr], Sparr [Sp| and Schmeifler [Sc|. At the end of the eighties Triebel [Tr1], motivated by
problems in connection with eigenvalue distributions of integral operators, investigated the trace
problem with respect to the diagonal 1 = x2 for the Besov spaces S;’EB (R?). In recent years there
is an increasing interest in function spaces with a dominating mixed derivative in connection with
the numerical solution of some special partial differential equations or integral equations, see e.g.
Griebel, Oswald, Schiekofer [GOS], Yserentant [Ysl, Ys2], Nitzsche [Ni] or Bungartz and Griebel
[BG].

We are interested in the description of the trace classes of Sp""*" W (R?) (and more general function
spaces) with respect to an hyperplane in oblique position. Since at least twenty years the situation
is well understood if the trace is taken with respect to hyperplanes parallel to the coordinate axes,
cf. e.g. the monographs Amanov [Am|, Gelman, Maz’ya [GM] (p = 2) and Schmeifler, Triebel [ST].
However, there is an essential difference in case that the hyperplane is in an oblique position. First
observations in this direction have been made by Triebel [Trl] in the two-dimensional case, later

continued by Rodriguez [Ro] and complemented by the first author, see [Vy3]. To our own surprise



the problem for d = 3 turned out to be more complicated. New phenomenona occur. Whereas
for d = 2 almost all trace classes of Sobolev and Besov-Lizorkin-Triebel spaces are again Besov or
Lizorkin-Triebel classes (in some limiting cases of generalized smoothness, see [Vy3]) the situation
changes with d = 3. Here it turns out that the trace classes can be described as the sum of three
different function spaces of dominating mixed smoothness. In proving such a statement we offer
two different approaches. The first one is restricted to p = 2 and uses elementary properties of
the Fourier transform. In this simplified situation we are also able to establish a characterization
of the trace class of S5""2"* W (R3) as a La-space with a weight in the Fourier image. For p # 2
one is confronted with difficult Fourier multiplier assertions. To circumvent this we apply the
characterization of these classes by atoms which works also in the more general case of Besov and
Lizorkin-Triebel spaces. However, the description of the trace classes found in this way is not very
transparent. Here some further progress would be desirable.

To explain a part of the difficulties let us consider an example. We equip the hyperplane x1 + x5 +

x3 = 0 with an orthogonal basis
O ={d1,02}, 1= (011,012,013) €', 2= (021,022,023) €', &1 Lds. (1.1)
Then we associate to this basis the corresponding ”orthogonal” trace operator
(tro f)(z1,22) = f(2101 + 2202), 21,22 € R. (1.2)

Now we consider the following family of functions

A1, w2, 23) = (21) (x2) Y(a3) |73]" (z1,72,73) ER®, N €ER,

where 1 : R — R is a smooth cut-off function supported around the origin. Such a function f)
belongs to Sy "W (R3) if A > r — 1/p. But the regularity of the function

gz (21, 22) = Y(01121 + 02,122) Y (01,221 + 02,222) (01,321 + 02,322) 01,321 + 02,3Z2|>‘

depends on O. The function g, belongs to Sp," W (R?), A > r — 1/p, if either o13=0o0r oy3=0.
If 013 - 023 # 0, then gy belongs to S,t,’tW(]R2), A >2t—1/p. As a consequence the description of
the traces of Sy W (R3) to the hyperplane z; + 3 + 23 = 0 must depend on the chosen basis
0.

The paper is organized as follows. In Section 2 we start with a general discussion of the notion of
the trace and continue with a detailed investigation of the trace problem for the Sobolev spaces
of dominating smoothness built on Ls(R3). Here we shall apply methods from Fourier analysis.
In case p # 2, treated in Section 3, the situation becomes more complicated and we switch to the
powerful but less transparent method of decompositions of functions into small building blocks like
atoms. By means of those decompositions we are able to describe the trace classes for the general
case of Besov and Lizorkin-Triebel classes. Our main results are contained in Theorems 2.11, 3.10,
and 3.14.



2 The Trace of Sobolev Spaces of Dominating Mixed Smoothness
S3(R?)

2.1 Sobolev Spaces of Dominating Mixed Smoothness

Let 1 <p<ooand 7 = (ry, ... ,7q) € N& (Ny denotes the natural numbers including 0). The
Sobolev space of dominating mixed smoothness 7 = (71, ... ,rq) is the collection of all functions
f € Ly(R?) such that

Df € L,(RY), 0<a; <ry, i=1,...,d,
endowed with the norm
1FISEWRD =D | D |Lp(RY)]| - (2.1)
a<r
Here o <7 means o; <r;, i =1, ... ,d.
ar1+...+'rdf

The mixed derivative plays a dominant part here and this fact is responsible for

i ™
the name of these classi?. ”]l')’a;éied on a Fourier multiplier theorem of Lizorkin one can prove a
characterization of these classes using the Fourier transfom. Let S(R?) denote the class of all
complex-valued rapidly decreasing infinitely differentiable functions defined on R?. By S'(R9) we
mean the collection of all tempered distributions and F and F~! denote the Fourier transform
and its inverse, respectively, both defined on S’(R%). Then f € S’(R?) belongs to S;W(Rd) if and
only if

FHA+1aPm2 (e FL©) () € LyRY).

Furthermore, the norms || f |SZW(Rd)|| and

| £ 1syw @D = | f—l(ﬁu G2 FF©) () LR (2:2)

1=

are equivalent, cf. e.g. [ST, 2.3.1]. The Fourier-analytic description can be taken to generalize
these Sobolev spaces to fractional and negative order of smoothness, cf. [ST, Chapt. 2]. We will
take (2.2) as the definition of S;W(]Rd) ifr=(r,...,rq),meRi=1,...,d

2.2 Some new Function Spaces

As it will become clear below the description of the trace spaces will lead to some new Sobolev-type
spaces. For us it will be sufficient to introduce these classes in the two-dimensional setting. For
the rest of this section we concentrate on p = 2.

Let M be a 2 x 2-matrix,

M:<Z ;), det M #0, and let 771:<Z>, _’2:<2>. (2.3)



Definition 2.1. Let M, 71,1 be as in (2.3). Let r1,m2 € R. Then Sy""*W(M,R?) denotes the
collection of all tempered distributions f € S'(R?) such that f o M € S5""*W (R?). We endow this

class with the norm

1 f 185> W (MR = || f o M|S3 W (R?)]].
The following properties of these classes are immediate.

Lemma 2.2. Let M, ni,n5 be as in (2.3). Let r1,m9 € R.

(i) The classes Sqt"™*W (M, R?) are Banach spaces continuously embedded into S'(R?).
(ii) C§°(R?) is a dense subset of Syt W (M,R?).

(ii) A function f € S'(R?) belongs to Sy ™*W (M, R?) if and only if

(I+]ag +b&)2 (14 |c& + d&)?/? |FF(©)] € La(R?).
Furthermore, the expression

|+ lagy+ &Py (1+ [e& +d&l) /2 | F£(©)]| La(R2)
yields an equivalent norm in Sy""*W (M, R?).

For r1,79 € Ny (here Ny denotes the natural numbers including 0) there is an other interpretation.

As usual, by g—f; we denote the weak directional derivative of f in direction 7.

Definition 2.3. Let ni,75 be linearly independent vectors in R%. Let r1,r9 € Ny. Then
Sy W (n1,173) denotes the collection of all functions f € Lo(IR?) such that

oY1 +a2f

WELQ(Rz) fO’f’ all CM@S’I"@,Z.:LZ.

We endow this class with the norm

S aa +a
I F1sp WO Bl = 3 Z [presces

a1=0 «

LQ(R%H.

Remark 2.4. Obviously, these classes S5""2W (n]1,173) are Banach spaces. Let e1,es denote the
elements of the canonical basis of R%. Then we have Sg*"2W (e, e2) = So»"W (R?). Furthermore,

C§°(R?) is a dense set in Sy""2W (11, 13) for arbitrary vectors 71, 175.

For a smooth function f it follows

) L __of
021 —(foM)(x) =< Vf(Mz),7) >= o (Mzx).
By an induction argument we conclude
8041+a2 o1 +a2f
W(fof\/l)( T) = W(Mm)-

Using the density of smooth compactly supported functions this proves the following.

Lemma 2.5. Let M, i1, and s be as in (2.3). A function f € Lo(R?) belongs to Sy "W (1, 13) if
and only if the function foM belongs to S5 *W (R?). Furthermore, the norms || f |Ss" "W (171, 12) ||
and || f o M |S3"2W (R?)|| are equivalent.



2.3 The Trace with Respect to an Arbitrary Orthogonal Basis of the Hyper-
plane

Let A;(R3) be a class of functions (distributions) defined on R? and let C'(R3) be the collection of

all continuous functions on R3. By T we denote a hyperplane in R?. Then we consider the mapping
T : f — f‘f

which is well-defined in case of a continuous function f. The aim of this paper consists in deter-
mining a class of functions Ay(R?) — S’(R?) such that T, originally defined on A;(R3) N C(R3),
extends to a linear, continuous and surjective mapping belonging to £(A;(R3), A2(R?)). In case,
that there exists a linear and continuous operator ext € £(A3(R?), A1(R3)) such that T oext = I
(identity on A2(R?)), we shall call T a retraction and ext its corresponding coretraction.

In the monographs Amanov [Am, 9.5], Gelman, Maz’ya [GM, 2.3] and Schmeifler, Triebel [ST,
2.4.2] the traces of function spaces with dominating mixed smoothness on hyperplanes parallel to
the coordinate axes were studied. For simplicity let the hyperplane be given by x3 = 0. Then the

result is the following.

Proposition 2.6. Let r3 > 1/2. Then the mapping

T: f(x1,32,23) = f(x1,22,0)
extends to a retraction from Sy "W (R3) onto SyV"*W (R?) .

Remark 2.7. A few comments are in order. First of all, S(R?) is dense in the class Sp*" W (R3).
So the trace operator is the unique linear extension of the mapping T'. Secondly, there is a natural
coordinate system on the hyperplane x3 = 0 to measure the smoothness of the trace, namely that
one induced by the unit vectors e; = (1,0) and ey = (0,1). Notice that the spaces Sp""?W (R?) are

not invariant under rotations in general.
In this paper we investigate the trace with respect to the hyperplane
I:= {(azl,xg,ajg) eER?: x4+ axat 3= 0}.

with I" as a model case for a hyperplane in an oblique position. However, taking the trace with

respect to the hyperplane

Iy = {(@1,22,23) : 7121 + Y222 + Y323 = 0}, 7 =(,72,73)

where 1 -2 -v3 # 0, would give us the same result (up to the norms of considered operators). This

statement relies on the fact, that the mapping
f(w1, 02, 23) — f(Mz1, A2®2, A3w3), A1+ A2+ A3 # 0,

is a bounded bijective mapping of S;W (R?) onto itself.

The ”"natural” trace operators

(tr1 f)(z2,23) = f(—22 — 23,22, T3), (2.4)
(tra f)(z1, 3) = f21, —21 — 3, 73), (2.5)
(trs f)(x1,22) = f(@1, 22, —21 — T2) (2.6)



and the trace operator trp f, see (1.1) and (1.2), are connected through

(tro f)(z1,22) = [f(2101 + 2202) = f (01121 + 02,122, 01,221 + 02.222,01,321 + 02322)
= (tr1 f) (01,221 + 02222, 01321 + 02,322)
= (tr1 f)(R12), (2.7)

Ri = 712 922 and 7= 7' ). (2.8)
013 023 z2

(tro f)(z1, 22) = (tra f)(R2Z) = (tr3 f)(R32), (2.9)

01,1 021 011 021
Ry = , Rz= . (2.10)
01,3 023 01,2 022

The linear independence of the vectors &1, &2, combined with &1,y € I', ensure that these matrices

where

Analoguously one obtains

with

R1,Ro, R3 are regular.

In what follows we shall determine the regularity of trp f as well as of tr; f, i = 1,2, 3.

Above we considered all orthogonal bases of I'. Probably it would be more natural to restrict to
orthonormal bases. However, all function spaces under consideration here remain invariant under
the change from an orthogonal to the associated orthonormal basis (up to equivalent quasi-norms).
The greater generality leads to nothing new but it simplifies the calculations. For that reason we

shall work with orthogonal bases.

2.4 The Regularity of trp f
2.4.1 A Description of the General Case

Let f € C°(R?). Now we introduce a very useful decomposition of f. Let &; denote the charac-

teristic function of the set
M; = {(71,72,73) |l :min(|7'1\,|7'2\,|7'3\)}, i=1,2,3.

Hence

|M; N M;| =0, i3, and OMi:R3,
i=1
(here | - | denotes the Lebesgue measure in R3). We put
fi(z) == FHX(E) Ff(©))(x),
and obtain f = f1 + fo + f3. We continue by defining

gi(l‘l,l‘g) = (tri fi)(l‘l,l‘Q), 1= 1,2,3. (2.11)



Elementary properties of the Fourier transform yield
1
F291(&1,&) = \/—2—7T/R}—3f1(7'1,§1 +71,& +71)dm
1
Fag2(61,&2) = \/—2_7T/Rf3f2(€1 + T2, T2, &2 + To) dTo

Fog3(&1,&) = \/%/Rfsf:a(fl + 73,8 + 73, 73) dT3 , (2.12)

where Fyg denotes the Fourier transform in R? and F3f the Fourier transform in R3, respectively.
Now we are going to check the regularity of the functions g;. To begin with we investigate ¢ = 1.

Let 71 > 1/2. By using Hoélder’s inequality we obtain

[ a+érasgr

2
/7:3f1(71,52 + 71,83+ 1) dri | d€y déa
R

IN

c1 /3(1 +E)2(1+ &) (1 + 18)™ | Fsfi(m, b + 11, & + 1) 2 dry déy dy
R
= ¢ /3[1 + (10 — 7)Y [1 + (13 — 1) (1 + 7)1 | Fa f1(m1, 72, 73) |2 d7
R

with ¢; = [p(14 72)7™ dry < co. Finally, we observe that if |71| < min(|7, |73]), then |r — 71| <
2|12, |3 — 11| < 2|13] and

[1+ (2 — 7)™ [L+ (73 — 7)) <47F3 (14 75)% (14 735)"
Because of supp F3f1 C {(71,72,73) € R3 : |71| < min(||, |73])}, we finally conclude
I try f1 1S3 W (R?)|| < e || f1 ISFW (R < ez || £S5 (R?)]| - (2.13)

This proves try fi € Sy>"*W/(R?). Similarly one obtains trs fo € So""*W(R?) (if ro > 1/2) and
trs f3 € SyV2W(R?) (if 73 > 1/2), respectively. To summarize our findings we need to recall a
further notion. For three quasi-Banach spaces A1, Ay, A3 < S'(R?) of tempered distributions we
put

Ay + Ay + Az = {g 68’(R2) o dg; € A;,i=1,2,3, st. g=g1+ g +g3}.

We equip this space with a quasi-norm by taking

3
| g]A1 + Az + As| 3:inf{Z||gz‘|Az'|| o g=01+92t93, 9 €A, 2':1,273}-

Lemma 2.8. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated with
O by (1.1), (2.8) and (2.10).
Suppose min(ry,r2,73) > 1/2. Then tro becomes a continuous mapping of Se" > W (R3) into

Sy W (R R + 851 W (R, R?) + S5 W (R R?) (2.14)

Proof. The boundedness of trp follows from the identity
3

3
(tro £)(2) =Y _ (tro £:)(2) = D (tri £i) (RiZ),
=1

i=1
cf. (2.7), (2.9), the definition of the spaces S3""?W(M,R?) and the inequality (2.13) and its

counterparts for tro and trs. O



The restriction min(ry,r2,73) > 1/2 has been convenient but is by no means necessary. Moreover,
as we shall see by the next theorem the operator trp is surjective in Lemma 2.8. The description

of the trace class becomes more complicated than in Lemma 2.8 if min(ry,ra,r3) < 1/2.

Theorem 2.9. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated with
O by (1.1), (2.8) and (2.10).
Let 7 = (r1,m2,73) € R with r; # 1/2,i =1,2,3 and

1 1 1
min <r1,r2,r3,r1 +r9 — 5,7“1 +rg3 — 5,7’2 +rg3 — 5) > 0. (2.15)
Then
tro € L(s§W(R3), SY(R2) + S2(R?) + 53(R2)), (2.16)
where
S W (R R, if 11> 3,

s! (R2) = ro,r3+ri—2 1 rotri—5.r3 1 1
Sy *W(Ry ,R?) NS, 2UW(RY JR2), i < 35

and similarly for S? and S>.
Conversely, to each function g € S*(R?) + S%(R?) + S3(R?) there exists a function f € STW (R3)
such that tro f = g.

Proof. Step 1. Preparations. For «, (3,t € R we define

I(a, B,t) := /OO A+ @t+7)2) A+ dr.

—00

In case a+ 3 > 1/2, § < 1/2, elementary calculations yield

(1+t)F it a>1/2,
I(a,B,t) <c g (1+t2)7P(14log(1+ [t]) if a=1/2, (2.17)
(1 4 %)~ (atBA)+1/2 if a<1/2,

for some ¢ independent of t.
Step 2. The boundedness of trp in case min(ry,r9,73) > 1/2 has been proven before.
Now we suppose 0 < r; < 1/2. We proceed as at the beginning of this subsection and obtain

/Lg(l-%£§VQU=+§§YB+”‘%

2
/fsfl(ﬁ,& + 711,83+ 11) dry | d§dSs
R

= Aﬂ+gwu+$w”ﬁhwm@@u+ﬁwu+m+@ﬁ“
X | Fafi(r, & + 11, & + 1)|? dry dé dés
< a /Rg[1+(72—71)2]7“2[1+(73—71)2]T3_Ol(14r712)r1 (1+ 73)* |Fs fi(re, 72, 73)|° d7,

where we have used (2.17) with some « satisfying % —r<a< % Choosing « sufficiently close to

% — 71 our restriction r1 + r3 > 1/2, see (2.15), guarantees r3 — « > 0. Furthermore, taking into

account the information on the support of F f; we arrive at

r2,r3+"1 -1 a 7
e ]Sy P W R < ol A1SSW R < o || £1S3W (R



with some ¢ independent of f. Interchanging the roles of £&; and &; also
fri—1 _
| try fr ]Sy P WR?)| < es || £ ISEW(R?)|

follows. Moreover, by symmetry we obtain the needed estimates of tr; f1, i = 2,3, as well. This
completes the proof of the boundedness.

Step 8. Construction of an extension operator.

Substep 3.1. Construction of a linear extension operator for Sy*"2W (R?). Let ¢ € C§°(R) be a
function such that [ ¢(t)dt = v/2m. Then, for g € C§°(R?) and x € R3, we define

filz) = ext}g(x) =T o) Fag(bo — &1,6 — &)](x)
folz) = ext}g(x) =Ty [o(&) Fag(é — &2,6 — &)](2)
fa(x) = extig(z) = Fy () Fag(&r — &3, 6 — &)] (x) -

Hence, e.g. for f3, we conclude

1
— | F + 73,9 + T3, 73) d13 = F* ,
\/%/R 3f3(&1 + 73,82 + 73, 73) dT3 = F2g(&1,62)
and from this identity we derive

g(x1, ) = (trz f3)(21, x2) = f3(w1, T2, —21 — T2), (z1,22) € R,
Similarly
g =try fi and g=tro fo.

The regularity of ext3 g is easily checked in view of
L, Qe @+ (s e F e o) df
=[G R O et P () olr) FPag(6r, ) s dea dry

< a /R(1+|T3|2)T1+T2+T3\80(73)\2d73 9185+ W (R?)]]*

< e lglSstrW(R?))?,

where we also used the fact that ¢ has compact support. This proves ext; €
L(S51W (R?), Sg0"™ W (R3)) for any r3 € R. Similarly, ext} € L£(S;*"™W(R?), S5 "W (R3))
for any 71 and ext} € £(S5"" W (R?), S5 "W (R3)) for any rq, respectively.

Substep 3.2. Construction of an extension operator in case min(ry,r2,73) > 1/2. We shall use the
abbreviations 41 = S5>W (R L R?), Ay = SV W (R, 1, R?) and A3 = S5 W (R, R?). Let
g € A1 + Ay + As. Further, let g = g1 + go + g3, where

3
gi€Ai, =123 and  |glAi+ A+ A5 <2 |lgilAill.
i=1
By definition ¢1(R;*) € S5>"*W(R?) and consequently, by Step 3.1, f1 = extigi(R;') €
SpTW(RS). Similarly, fo = exts go(Ry1), fo = extjgu(Ry') € SpTIWRY. We put



f:= f1+ fo+ f3. Because of

3 3
trof = Y trofi=Y (tr; f;)(R;")
Zzl =1
= Z <tri ext; gZ(RZ_l))(RZ )
i=1

3
= Y 9=y,
=1

see Substep 3.1, this proves the existence of a bounded extension of g if min(ry,r9,73) > 1/2.
r2,r3Hr1— 5%

Substep 3.3. Let 0 < r; < 1/2. We shall use the abbreviations A; = S, 2W(R2), Ay =

1.
Sgﬁm 2’T&I/V(}Rz). By the arguments from the previous substep (and by symmetry) it will be
sufficient to construct a function f; € S5 "W (R?) such that try fi = g1 (Rl_l-) € A1 N Ay, To

shorten notation we write h; instead of g; (Rl_l-). To begin with we define two subsets of R?

G = {688  le-al<lg-al
&2 — & &2 — &
4 2

<&l < if [&-&l=1,
@il it le-al<iy,

Q@={E&8&)  G-al<le-al

m;&l l&;gll g — 6| > 1,

&l <1 if m—fﬂ<1}

<& <

Obviously, these sets are disjoint. Let X; denote the characteristic function of €;, ¢ = 1,2. Then

we define

filz) = /6ix§f2h1(§2—§17§3—€1)

1+ (& —&)H)n 121+ (&G -&)H)
< MO e nrgrarge @ aa-a)
(L+ (& — &))" (L+ (& — &)?)retni—1/2
(IT+Hm 1+ &) (14£5)m

+ (6 H2(52—£1,§3—£1)) de

where the functions H', H? will be chosen later. First we prove tr; fi = hi. It is sufficient to
assume hj € CgO(RQ). Setting 7 = & — & and 73 = {3 — & we find

fl(_«TQ N x3’x2’x3) _ /I - Iei(zzfz-i-zgm) fghl(TQ,Tg) (1 + 7_22)7“2-i-7“1—1/2 (1 + T??)m Hl(TQ,Tg)
T2|<|13

1
" /I(m (L&) (L+ (2 +&1)2)2 (1 + (13 +&1)2)" dgy dry dr

+ / T2 HTT) Fohy (19, 75) (1+73)"™ (1+73)" V2 H2 (73, 73)
73] <72

1
" /I(r3> L+ (L4 (2 +6)2)72 (14 (13 + &)2)"

» d&1 dmo drs

10



with I(73) and I(73) being appropriate subsets of R. The functions H' and H? are determined
through the identities

1 1 (14 73)2+m1-1/2 (1 4 72)rs =
Himm) = (zmMHfWWLHm+&W”ﬂ+W+&W“%O ’

s (4 73)" (Lt r)en /2 -
H(r2,m5) = 27T(/,(73) 1+ )1 (1 + (12 + &)%) (1 + (73 + &1)2)7 dfl) ‘

As a consequence we obtain

1

fl(_332 - 353,352,353) = % /2 ei(mTQ—H%T3 .7'—2}11(7'2,7'3) drodrg = hl(:L‘g,{L‘g)
R

as claimed. ;jFrom the definition of the sets {2; we derive the existence of two positive constants ¢y

and ¢y such that for all m, 73

as well as
c1 < H*(19,7m3) < .

This will be used to prove that f; is sufficiently regular. Indeed, we have
/Rg (L4 €)™ (1+&5)™ (1+ )" F3f1(§) dE
= [ AT A+ O+ ) b — 61,6~ )P

< (WO 1H G - 6.6 — P L+ (& — €))7 L+ (6 - €D

+ X2(6) [H(& — €163 — €12 (1+ (& — €077 (L+ (& — €)H)** 7271 ) d
= J1+ Js.

A change of coordinates, the boundedness of H' and the definition of ; yield
S <G / | Faha (72, 73) 7 (14 75) 222171 (1 4 737
2| <|73]
[T o @) (U (602 dr drad
I(r2)
< e / Fohi (ra, 73)[? (14 727247 7Y2 (1 4 2275 dry dirs
R2
The estimate of Jy is similar. Hence
abrr — L _1,,
|| fl |S;“1,T2,T3W(R3)H <e¢ (H hl |S;“277“3+T1 2W(R2)|| + H hl |S;“2+T1 27TJW(R2)H)
with some constant ¢4 independent of hy. This proves the boundedness of the extension. O

Remark 2.10. Let us mention that we have not shown the existence of a linear and continuous
extension operator. The step in which g is splitted into the three functions g1, g2 and g3 need not

be linear. This problem will be investigated in the next subsection.
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2.4.2 A Description of the Trace Classes on the Fourier Side

For simplicity we concentrate on the situation min(ry,r2,73) > 1/2. The sum S5""2W (R3 ', R?) +
SoUW (RS R?) 4 S5 W (R, R?) is not direct. Tt is obvious that

O (R3) © (S;“”?W(Rgl, R2) N SL W (Ry L, R2) N S5 W (R, R2)) .

At this moment it is not clear whether the connection between g and its optimal decomposition
g1 + g2 + g3 can be realized in a linear way. But that can be seen easily by the Fourier-analytic

description of the trace space.

Let O be an orthogonal basis of I' = {(x1, 72, 23) € R? : 21 + 29 + 23 = 0} and let Ry, Ro, R3 be
the matrices associated with O. First, we notice that g3 € S5""W (R3 "', R?) if, and only if,

r1/ r2/
[1 + (02,251 — 0'172£2)2} ? [1 + (02,151 - 0'1,152)2} ’ }-93(51752) € L2(R2) ) (2-18)

m3 (grl 752)

cf. Lemma 2.2(iii). Similarly, g; € S5>"™*W (R ', R?) if, and only if,

1t (00561 — 0156) 17 1+ (0206 — 0106) ™ Far(e1,62) € Lo(®2). (2.19)
1+ ( )

mi1(€1,€2)

and go € S5V W (R5 1, R?) if, and only if,

2171/2 r3/2
{1 + (02,351 — 01,352) ] {1 + (02,161 — 01,152)2} Fga(1,6) € Lo(R?). (2.20)
ma(&1,62)
In view of these characterizations we define
m(&1,&2) := min (ml(&,52),77%2(51,52),7”3(51752)) . (2.21)
and
Ly(R2,m) := {g € Ly(RY): mFge LQ(R2)} (2.22)
equipped with the natural norm
g |La(R?,m)| == || m Fg|La(R?)] .

Now we arrive at the main result of this section.

Theorem 2.11. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated
with O by (1.1), (2.8) and (2.10). Suppose (2.15) and r; # 1/2, i = 1,2,3. Then there exists a
continuous function m such that tro becomes a retraction of Sy *W (R3) onto Lo(R?,m). There
is a bounded linear extension operator ext € L(La(R?,m), S5 "W (R?)) such that trpoext = I
(identity on La(R?,m)).

Proof. We concentrate on the case min(rq,r2,73) > 1/2. Then the function m is given by (2.21).

The modifications which have to be made for the general situation are obvious. We omit the details.
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Step 1. Boundedness. Again we shall use the abbreviations A; = SQQ’T3W(R1_1,R2), Ay =
S5 W (RS 1 R?) and A3 = STI’TQW(Rgl,]W). Let g € A1 + Ay + Az and let g = g1 + g2 + g3 be
an optimal decomposition of g with g; € A;. Then

w

&) |Fg(¢) §: OI|Fg()l,  EeR

But this implies
3 3
lg[La(R:,m)|| <> mi Fgi |[La(R?)]| < ¢ Y [l g:|Aill,
=1 =1
with some ¢ independent of g.

Vice versa, if g € Ly(R%,m), then we define

Q= {(616) : mil6,&) =ml&,&)}, (2.23)
X; denotes its characteristic function, and
gi(x) = FHA(E) Fg(©)l(x), i=1,2,3. (2.24)
Thanks to 3
:NQ;| =0, 47, and UQZ-:R2,
i=1

(| - | Lebesgue measure in R?) this implies g = g1 + g2 + g3 and
|'mi Fgi |La(R?)|| < [|m Fg|La(R*)[|,  i=1,2,3.

Summarizing we have proved the coincidence of Sy'"W(R3%,R?) + Sy W(R;L,R?) +
Se2W(RTYL,R?) and Ly(R%,m) in the sense of equivalent norms. Hence trp €
L(SgE™"W (R3), Ly(R?, m)).

Step 2. The linear extension. Since the mappings g — ¢;, ¢ = 1,2,3, cf. (2.24), are linear and
continuous, the extension operator constructed in the proof of Theorem 2.9 is linear and bounded

as well. O

2.4.3 The Trace Space for a Dominating Direction

This subsection contains an additional observation of minor importance. So we concentrate on
min(ry,re,73) > 1/2.
A simplified description of the trace spaces can be given in case that one of the parameters ry, 79, r3

is dominating the sum of the other.

Lemma 2.12. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated with
O by (1.1), (2.8) and (2.10). Then the embeddings

SyEW(Ry LR = SPW (R R?) and  SpPTW(RTLR?) — SUPW(Rs T, R?)

exists if, and only if, r3 > r1 + ro.
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Proof. Again we work in the Fourier image. Let mq, ms and mg be the functions defined in (2.18)-
(2.20). Then the first embedding is equivalent to the boundedness of mg/msy and the second is
equivalent to the boundedness of mg/m1, respectively.

Let us turn to the boundedness of the first quotient. By a change of coordinates

y1 1= 02281 — 01,282 and Y2 i= 02,381 — 01,382
and taking care of &1, € I' the boundedness of m3/mg is equivalent to

sup (L+yD)" [1+ (1 4+ y2)4"™
y1,Y2€R (1 +y%)T3(1 +y%)T2

< 0.

With yo = 0 the necessity of r3 > r1 4+ ro follows. Sufficiency can be derived from
14 (11 +12)* <21+ 4i) (1 +13) -
O

Theorem 2.13. Let O be an orthogonal basis of T' = {(x1,z2,23) € R3: 21+ 20+ 23 = 0} and
let R3 be the matriz associated with O by (1.1) and (2.10). Let min(ry,r2,r3) > 1/2 and suppose
r3 > 11+ 1. Then tro becomes a retraction of Syt"*"*W(R3) onto S5V W (R3 ', R?)) and

SEVW (R, R?)) = La(R2, m3) (equivalent norms).
Proof. jFrom Lemma 2.12 we derive
S;‘1,T2w(R3’R2) + S;Q’T3W(R1,R2) + S;l’T3W(R2,R2) — 5’;"1,7“2W(R3,R2)

with equivalent norms. Now the statement follows from Theorems 2.9 and 2.11. The last identity
has been derived in (2.18). O

Also try, tro and trg have additional properties if one of the smoothness parameters dominates the

sum of the other.

Theorem 2.14. Let O be an orthogonal basis of T' = {(x1,x2,23) € R3:zq + 29423 = 0} and
let R3 be the matriz associated with O by (1.1) and (2.10). Let min(ry,re,73) > 1/2 and suppose
ry > 11+ 7o.

Then trs becomes a retraction of S5 "W (R3) onto Sy""*W(R?), i.e. there exists a linear
extension operator ext® € L(Sy" W (R?), Sg2" W (R3)) s.t. trgoext* = I.

Proof. Step 1. Boundedness of trz. To show that, we use again (2.12). Furthermore, taking
h(&1,&2,713) := Ff(& + 713,& + 73,73), it will be enough to show the existence of some positive
constant ¢ such that

2

L, arra+a dyn dys (225)

/ h(y17 Y2, y3) dy?)
R

< c /IR3 [1 + (yl + 93)2]7“1 [1 + (y2 + y3)2]r2 [1 + yg]m |h(y1,y2,y3)|2 dyy dyo dys .
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Let us denote
O1(y1,y2) = (L +y1)" (1 +y3)"
and
Oa(y1,y2,y3) == [1+ (1 +u3)™ [1+ (y2 +93)°] (1 +43)"°
respectively. Then Hoélder’s inequality leads to

2
L4327 (1 +52) ( [ o) dy3>

© , 9
N < R \/m \/m|h(yl7y27y3)|dy3>

©2(y1,Y2,¥3)

O1(y1,v2) / 2
- _lnbe) O3 (51,12, ) B (y1, v, ys) | dys
( Y1 ,yQI;R R 62(:[/17 Y2, y3) 93) R 2(y1 b2 y3)| (yl b2 y3)| vs

IN

= 0O(ry,r2,73)

If ©(ry,79,73) < 00, then it is enough to integrate this inequality with respect to y1,y2 € R to
obtain (2.25). To prove finiteness of ©(r1,r9,73) under the given restrictions is elementary.

Step 2. Surjectivity of tr3. Here we make use of the operator ext}, defined in the proof of Theorem
2.9, Substep 3.1. O

Remark 2.15. By symmetry we have similar statements with respect to tr; as well as to trg, e.g.
if min(ry,72,73) > 1/2 and ro > 71 + r3 then tra becomes a retraction of Sy""*"*W (R?) onto
S;““W(R%.

2.4.4 An Example

We consider the orthogonal basis &7 := (1,—1,0), and &9 := (1,1,—2) of I". Then the functions
mg, i = 1,2,3, defined in (2.18)-(2.20), are given by
mi(é,&) = [1 + (251)2] [1 + (61 + 52)2]T3 ;
mie &) = [1+0a?] 1+ @ -&?]",
min ) = [1+@+&? 1+ -

Let r1 = r9 = r3 = 1 and define
w1, £2) := min (1 4 5E2 4+ €2 + 2616y + 46} + 46262 + 8838,

1456 + & — 2616 + 46! + 4626 — 8eler, 1+ 261 + 26 + &b — 28 + &)

T2

r2

cf. (2.21). Hence, the trace space of the Sobolev space S%’l’ll/V(]R?’) with respect to this orthogonal
basis is the collection of all functions g € Lo(R?) such that

[, wlér. ) Fater, s < .

Furthermore, the trace space of the Sobolev space 55’1’2W(]R3) with respect to this orthogonal
basis is the collection of all functions g € Lo(R?) such that

/R2 (1 + 262 4262 4 ed — 222 + 63) |Fg(&1,&)PdE < 00
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3 Besov and Triebel-Lizorkin Spaces

Now we turn to the general case of Besov and Triebel-Lizorkin spaces. To begin with we recall the
Fourier-analytic definition as well as the characterization by atoms of these classes. Since we shall
need the spaces for d = 3 and for d = 2 we shall work for a while with the general d-dimensional

case.

3.1 Notation

As usual, R? denotes the d—dimensional real Euclidean space, N the collection of all natural numbers
and Ng = NU{0}. The letter Z stands for the set of all integers and C denotes the complex numbers.

If 2,y € R?, we write x > vy if, and only if, z; > 1; for every i = 1,...,d. Similarly, we define the
relations = > y,x < y,x < y. Finally, in slight abuse of notation, we write > A for z € R4, A € R

if x; > \;i=1,...,d. For a real number x we denote by x := max(z,0) the nonnegative part.

Let S(R?) be the Schwartz space of all complex-valued rapidly decreasing infinitely differentiable

functions on R,

3.2 The Fourier-analytic Approach
Let ¢ € S(R) with

et)=1 if [t|{<1 and ¢(t)=0 if [t >
We put o = ¢, ¢1(t) = ¢(t/2) — ¢(t) and

p;(t) = p1(277), teR, jeN.

. (3.1)

N W

Hence we have » 22, ¢;(t) = 1 for all t € R. For k= (ki,...,kq) € Nd and x = (21,...,24) € R?

we define () := @, (z1) ... Yr,(xq). Then, since
Z ¢r(z) =1 for every z€RY (3.2)
keNg

the system {@E}EeNg forms a smooth dyadic resolution of unity. This will be used to define the
classes of functions we are interested in.
Definition 3.1. Let 7 = (r1,...,73) € R%, and 0 < ¢ < oo.

(i) Let 0 < p < oo. Then the Besov space of dominating mixed smoothness S;qB(Rd) is the
collection of all f € S’(RY) such that

_ = 1/ -
17185 BRI = (32 257 F fop FAIL,®RII) ™ = (1257 F o Al (L)l (3.3)
keNg
is finite.

(ii) Let 0 < p < oco. Then the Triebel-Lizorkin space of dominating mixed smoothness S;qF(Rd)
is the collection of all f € S’(RY) such that

1155 P @ = || (3 257 ep 20 17) Lo @] = 1257 F o FAIL I (3.4
keNd
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is finite.

. . = d . ra d = d
Remark 3.2. 1. Sometimes, we shall write S  A(R?) instead of S)  B(R?) or S F(R?).

2. Different functions ¢ (with properties described above) lead to equivalent quasi-norms on
S;qA(Rd). We shall write || f |S;qA(Rd) || meaning one of these quasi-norms (which one is in general

with no importance in our context). For details see [ST, Section 2.2.3].

3. For a systematic investigation of these classes we refer to the monographs [Am| and [ST]. More

recent developments may be found in [Ba], [Ho] and [Vyl, Vy2, Vy3|.

4. For 1 < p < oo we have the coincidence of S} ,F (R?) and the Sobolev space SZW(Rd) in the
sense of equivalent norms, cf. [LN] and [ST, 2.3.1].

3.3 Atomic Decomposition

In the mid-eighties Frazier and Jawerth [FJ1] have been the first who studied atomic decompositions
of Besov spaces. One of the applications has been a description of the solution of the trace problem
with respect to hyperplanes in the isotropic situation. Here we follow the same philosophy. We
shall make use of the characterization of Besov and Lizorkin-Triebel spaces by means of atoms for
studiing the properties of trp.

Atomic decomposition techniques allow a certain discretization. Function spaces are replaced by
sequence spaces. This method has been studied in various situations by now, cf. [FJ1, FJ2, AH,
Tr2] for isotropic spaces of Besov and Lizorkin-Triebel type and [HN] for some generalizations in
various directions. Besov and Lizorkin-Triebel spaces of dominating mixed smoothness have been

characterized in such a way in [Vy2].

3.3.1 Sequence Spaces

For v € Ng,m € Z% we denote by Qpm the cube with the centre at the point 27"m =
(27"'myq,...,27%dmy), sides parallel to the coordinate axes and of lengths 271, ... 277, We de-
note by xzm = XQ,., the characteristic function of Qzm and by ¢ Qrm we mean a cube concentric

with Qpm with sides ¢ times larger.
Definition 3.3. If 0 < p,q < 0o, 7 € R? and
A={wmeC:7eN,mez, (3.5)
then we define
shabi= 1A |Alspabll = (3 270 ( 3 ol ) < (3.6)
veNd meZd

and

uf = {2s rl=| (X X |2”'%mxym<->|q>Uqu(Rd)

veNE meZd

‘ < oo} (3.7)

with the usual modification for p and/or ¢ equal to co.

Remark 3.4. We shall use the same convention as in case of the distribution spaces: from time to

time we shall write [||s},all instead of [[A|sp bl| or [|A[s}, fl|, respectively.
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3.3.2 Atomic Decompositions

We will be very brief and refer for details to [Vyl] and [Vy2]. Here we concentrate on the "regular”

case, i.e.
op = max(}l7 -1, 0) in the B-case (3.8)
T > 3.8
Opg = max(@ -1, O) in the F-case.

The phrase "regular” indicates that only those distribution spaces are considered which consists
of regular distributions. Then, compared with the general case, no moment conditions have to be
satisfied by the elementary building blocks called atoms. As usual, [x] denotes the integer part of
the real number z. If ) is a cube and ¢ is a positive real number then 6@} denotes the cube with

the same center as (), sides parallel to those of () and sidelength multiplied by 9.

Definition 3.5. Let K = (K1,... ,K;) € N¢ and 6 > 1. A K-times differentiable complex-valued

function a(z) is called K-atom related to Qpmy if

suppa C 0 Qum, (3.9)
and

sup |D%(x)| < 2%V for 0<a<K (3.10)
rER

Theorem 3.6. Let 0 < p,q < 00, (p < 0o in the F—case) and T € R? with (3.8). Fiz K € N& with
K>+[m)y i=1,....d, (3.11)

and § sufficiently large.
Then f € S'(RY) belongs to S;qA(Rd) if, and only if, it can be represented as

f= Z Z Ao mam (), (convergence in  S'(R?)), (3.12)

veNd mezd
where {a;m(az)}geNgWeZd are K-atoms related to Qum and X € sp,a. Furthermore,
inf ||>\|S;qa||,

where the infimum is taken over all admissible representations (3.12), yields an equivalent quasi-
norm in S;qA(Rd).

Remark 3.7. To explain our philosophy, let the function a be a K = (K7, K3, K3)-atom related to
Qvm, where v = (v1,v9,1v3) and m = (my1, mg, m3). Then
(tr3a)(x1,m2) = a(x1, 2, — (21 + 22))

becomes a (K71, Kg)-atom with respect to Q(y, 1), (my,mo) if K3 > K1 + Kz and v3 < min(vq,vz).
Similarly traa (tr;a) becomes a (K7, K3)-atom ((K2, K3)-atom) with respect to Qu, 1), (m1,ms)
(Qva,v3),(ma,ms)) if K2 > K1+ K3 (K1 > Ky + K3) and vo < min(vq,v3) (v1 < min(rg,v3) ). This
simple observation will motivate an appropriate decomposition of the atomic decomposition of a

function which turns out to be a basic step in our proof of the boundedness of tre.
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3.4 Traces of Besov Spaces of Dominating Mixed Smoothness

For a better comparison we recall the properties of the mapping f(z1,x2,x3) — f(z1,22,0) in this
general context, cf. e.g. Amanov [Am, 9.5] and SchmeiBer, Triebel [ST, 2.4.2] (further references
are given in [ST, Remark 2.4.2]).

Proposition 3.8. Let 0 < g < oo.
(i) Let 0 < p < o0 and r3 > 1/p. Then the mapping

T: f(xy,x2,23) — f(x1,72,0)

extends to a retraction from SpY"*"* B(R3) onto Sp;"* B(R?).
(i) Let 0 < p < oo and rg > %. Then the mapping T extends to a retraction from Spl*" F(R3)
onto Spl* F(R?).

As mentioned in Introduction, to reflect the underlying geometry of our problem, we have to define

some new spaces with dominating mixed smoothness, cf. Subsection 2.2 for p = 2.

Definition 3.9. Let 0 < g < 00, 0 < p < 00 in the B-case and 0 < p < oo in the F-case. Let R be
a (2,2)-matrix with det R # 0. Then we put

ST ARRY) = {f e SR : foR € ST AR},
7 2 . 7 2
1F15p, g AR RO == [| f o RSy, (AR -
Recall that for p = ¢ = 2 we have coincidence of S5,B(R,R?) with S5W (R, RR?) in the sense of

equivalent norms, cf. [LN] or [ST, Thm. 2.3.1]. By means of these classes we are able to describe

the trace classes for Besov as well as for Lizorkin-Triebel classes.

The counterpart of Theorem 2.9 for Besov spaces is as follows.

Theorem 3.10. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated
with O by (1.1), (2.8) and (2.10).
Let 0 < p,q <00 and T = (r1,72,73) € R3 with r; # %,z’ =1,2,3 and

1 1 1
min <7"1,7“2,7“3,7"1 +r9g——,r1+1r3——, 19 +73 — —> > Op. (3.13)
b p b
Then
tro € L(S;qB(]R{?’), SY(R2) + S2(R2) + 53(R2)), (3.14)
where
Sp2T B(RTL,R?), if ry> L)
Sl (Rz) = 27)“72(],7“3+7"E—11 )1 rotri—Lrg 1 !
Sp.q "B(Ry ,R?)N Sp.q " "B(Ry ,R?), if r < %,

and similarly for S? and S>.

Conversely, to each function g € S*(R?) + S?(R?) + S3(R?) there exists a function f € S;’qB(R?’)
such that tro f = g.
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Proof. The restrictions in (3.13) are guaranteeing that we may apply Theorem 3.6 for S;’qB(R?’)
as well as for all spaces appearing in the definition of the target spaces but taken with the identity
matrix instead of R;l, ie€{1,2,3}.

Step 1. According to Theorem 3.6, each f € S;qB (R?) may be decomposed into

f: Z Z )\gmaﬁm(m), (315)
veNd mezd
with
| X5y 0l < cllf1S] ,B(R?)]] (3.16)

with some constant ¢ independent of f. We require some additional regularity of the atoms, cf.
Definition 3.5:

K; > max ([7«1] 4[] 2, ] + 3] + 2, [ra] + [rs] + 2) . i=1,23. (3.17)

In view of Remark 3.7 we decompose f into three parts f;,i = 1,2, 3, where

fi(z) = Z Z Z Z Ao apm(T), (3.18)

v1=0v2=v1 V3=V1 |EZ3

faz) = Z Z Z Z)\vmavm(@, (3.19)

vo=0v1=v2+1 v3=r2 meZ3
[e.e] [ee] [e.e]
fa@) = D > > omarm(a). (3.20)
v3=01v1=v3+1 vo=v3+1mecZ3
This allows us to decompose trp f into (see (2.7))

3

(tro f)(21,22) = Y (tri fi) (RiZ) . (3.21)

i=1

So, to establish (3.14) it is enough to prove the existence of a constant ¢ independent of f such
that

| tr1 f1 15557 BR?)|| < cl| f 1S ,BR)]] (3.22)
if vy > % and
o, r3tr—1 T
|| tr1 fi[Spg "BR?)|| < cll f155,BE®), (3.23)
rotri—1,r; 7
1t filSpg 7 BRI < cllf1S;, BR)]] (3.24)

if ry < %D and corresponding analoga for tr; f;, i = 2, 3.

Step 2. Proof of (3.22)—(3.24). We proceed similar to [Vy3]. For brevity we put

T, = {7eN3:v <min(rg,13)},
Ty, = {7eN}:1vy <min(rv,13)},
T3 = {ve Ng vy < min(vy,ve) }
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Then

try fi(zo,3) = > D Aomapm(—z2 — 23,2, 23), (3.25)
veEYT1 mMEBy
where
By:={meZ: suppaymnT #0}. (3.26)

Due to (3.9), for given 7 € Y1 and my, m3 € Z, there are at most N integers my € Z, such that
m = (m1,m2,m3) € By. The number N does not depend on 7 and mg, m3. To simplify notation
we shall work only with one number m;, denoted by m1(7, mg, m3) or simply by m; if the values

of 7, my and mg are clear from context. Rewriting (3.25) this gives

min(ve2,v3)

try fl z2, $3 Z Z Z Z )\I/ (m1,mz2,ms3) V(ml,mg,mg)(_:EQ — 3,12, $3)

=0v3=0 (mg,m3)€z2 11=0

o0

- Z Z Z Y(v2,v3) (ma2,m3) b(l/z,l/3) (mz,mg)(m27 1'3); (327)
Vo=

0v3=0 (mgy,mg3)€Z2

where
min(vz,v3)

7(”271/3) (m2,m3) = Z |)\U (ml,mg,m3)| 3 (328)

v1=0
Dva,vs) (ma,ms) (T2, 3) = 03f Y, 1) (mo,my) = 0, and

min(ve,v3)
1
b(l/z,l/g) (ma,ms3) (‘T27 x3) = )‘ﬁ (m1,m2,ms3) ay (m1,m2,m3) (_xQ — I3,%2, ‘TS)

V(va,vs) (ma;ms) =

i Yy ,05) (ma,mz) > 0. We recall, that in this sum m; is an abbreviation for mq (7, ma, ms3).
Step 3. We claim

L. D(vy,us) (ma,ms) are atoms in the sense of Definition 3.5 related to (v9,v3), (M2, m3) up to a

general constant.
2. ||y [spg *0ll < cl| Xsp 4bl| if 1 > %,

3. 0 Ispey ™™ Pl < el bl and [[7lsps P TbI < | Alspgbll if r1 < L.

Substep 3.1. The proof of the first assertion is elementary, see Remark 3.7. Two comments are
in order. The first one concerns regularity. If the components of K are large enough then b is
sufficiently smooth to satisfy (3.10) for some K such that we can apply Theorem 3.6 with respect
to the target space, cf. (3.17). The second comment concerns the estimate (3.10). As claimed this
estimate is satisfied by the functions b(,, ,) (m,,ms) UP t0 a general constant ¢, depending on a.
Since we need to control a finite number of derivatives only we conclude that C b, 1.1}, (mo,ms) are
atoms with C~! := max, ¢,. This is enough for our purpose.

Substep 3.2. Let r1 > %. Let ri —1/p=¢€1 + 9,6 >0,i=1,2. Obviuosly, 1 > 0 guarantees

min(va,v3) min(v2,v3) e
E [Aom| < a1 E | 27150 Apyam [P
v1=0 v1=0
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Next we use €9 > 0 and obtain

] TQ,Tngq _ i io: 2[V2(T2_%)+V3(T3_%)]q Z | P o
v s V(w2,v3)(ma2,m3)

vo=0v3=0 (ma2,m3)€Z?

<. i io: 2[1/2(7“2_%)""/3(’”3_%)}11 <min§y3) 2me Z |)\__‘p> )
> 62 b

v2=0v3=0 v1=0 (m2,m3)€Z?
o q/p
< s Z 2y-(r—5)q< Z |)\7m‘p>
veTy (ma,m3)€Z?

<ecs||A \s;qbﬂq.
Substep 3.3. Let r1 < l. To begin with let p > 1. The triangle inequality yields

min(vz,v3) min(vz,v3)

> (% wal)) S (T )

(ma2,mg)€Z? v1=0 (ma,m3)€Z2
If now ¢ < 1, we get

min(vz,v3)

o o0
||’y|s;2(;m+r1 pb||q < Z Z olva(ra=5)+ws(rstri—3—5)la Z ( Z -
v2=0v3=0 v1=0 (ma,m3)€Z?
b.(r—1 a/p =
<y 2 (7 p)q< 3 ‘)\vm‘p) < ([ Alsh  bll
veYy (mg,m3)€Z2

For ¢ > 1, we denote
1/p
Op = ( Z | Ao ml” )
(ma2,m3)€Z?
and apply Hélder’s inequality to obtain

r2,r3+r1—

17 [8pg prq

min(vz,v3)

< i i Q[Vz(rz—%)-i-w(rg—i-n_%—%)]q Z 2(u3—u1)(r1_%)2(,/1_1,3)(“_%)Qy

vo=0v3=0 v1=0
/
min(va,v3) a/q

< Z ows—v1)(ri—3)d’ Z o7 (F=3)a ol

v1=0 veYq
<cllA |S;qb||q.
This proves our claims if p > 1. Now let p < 1. We substitute (3.29) by

min(vz,v3) 1/p min(vz,v3)
|>\Vm| ) =

(x> (Yw))"<( 2 7Y

(ma,m3)€Z? v1=0 (me,m3)ez? v1=0 v1=0
If ¢ < p the monotonicity of the ¢,.-quasinorms yields

min(va,v3) a/p

oo o0
IETSARTTED 35 SEECa It B Sl

v2=0v3=0 v1=0

— = 1 —
< 37 27T < || A s] bl

veT
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p) 1/p

1/p

(3.29)

q

(3.30)

(3.31)



And for ¢ > p, we combine (3.30) with Holder’s inequality

min(v2,v3) min(vz,v3)
Y gt peger-mn—p p c( S gtrn=} Qg>”/ !
v1=0 v1=0

to derive (3.31) again. Moreover, the second estimate in Claim 3 follows by interchanging the roles
of 79 and r3. This completes the estimates claimed for ~.
Step 4. We shall prove the estimate for try fi. In case r1 > %D we argue, by using Claim 2 and
Theorem 3.6, first in d = 2 and later in d = 3, as follows

[[trs f1l S5 BRI < e1 [y |52 2bll < ez [| A sy qbll < es || £ 1S BRI

Mutatis mutandis the case r; < % can be treated. The estimates of tr; f;, ¢ = 2,3 follow by

symimetry.
Step 5. Now we construct the (non-)linear extension operator. We start with a function g €
S1(R?) + S?(R?) + S3(R?). Then there are g; € S*(R?), i = 1,2,3, such that g; € S (R?), g =
g1+ 92 + g3 and

19: 1S*(R?)[| < 211 g|S*(R?) + S*(R?) + S°(R?)].
We shall extend each g; separately. It means, we construct three functions fi, fo, f3 € S;qB(R?’)
such that tro f; = g;, 1 = 1,2, 3. The desirable extension will than be given by f = f1 + fo + f3.
Substep 5.1 We restrict ourselves to ¢ = 1, the other cases follow by symmetry. To begin with we
treat the case r; > 1/p. We put hy := g o Ry'. Then hy € Sp%™B(R?) and, according to (2.7),
we get

91(21, 22) = (tro f1)(21,22) = (tr1 f1)(R12)

for all Z = (21, 20) € R? if, and only if,
91(RT12) = h(2) = (tr1 f1) (21, 22) = fi(—21— 22,21, 22), 7= (21,2) € R%.

Hence, our original task, namely to find f; such that trp fi = g1, where g; € Sp;%°B (Rl_l,]R2) is
given, can be replaced by searching for fi such that try fi = hy, where hy € Sp%"° B(R?). Again

we make use of atomic decompositions. According to Theorem 3.6 we can decompose

hi(zo,x3) = > D Vvaws) (mama)Dwavs) (masms) (T2, T3),

(v ,V3)EN(2) (ma,m3)€Z?

where
cr ||y |sp2bl < [ ha [Sp% B(R?)|| < ca ||y [sy2" ]|

for certain positive constants ¢; and co independent of hy. Now we choose an integer mj such that
27" my + 27"2mg + 27 mg| < 27! and define

apm (71, T2, 73) = P2 21 — M1) by 1) (mo,ms) (T2, T3),
where

e S(R), suppty C [-2(146),2(140)], ¢()=1ifte[—(1+9),(1+9)]
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and 0 is the number from (3.9). For 14 < min(v», v3) some easy calculations yield

a;m(—ZL‘Q — I3, T2, 1‘3) = b(l/z,l/g) (mz,mg)(‘r?v .%‘3) s (1‘2, 1‘3) e R?.

If the first component of m differs from this specific mq then we define az7 = 0. Further, we put

Yva,v- m: if vy = 0,
A(thz,us) (m1,ma,m3) *= { 0(V2 vs) (m2,m3) otherwise (3.32)
and
f1 = ext hl = Z Z )\ymapm.
veT1 meZ?
Then
| ext hn |S) BR[| < Crl[Alsy qbll = Crll 718270l < Ca||ha [S%7 B(R?)]]. (3.33)
This showes that f; represents an appropriate extension of hq if v > %D.
_1
Substep 5.2. Let m < 1/p. First of all notice that this time h; € S;?q,r3+r1 "B(R?) N
_1,.
S;i;rrl "’RB(R2). We have to modify the definition of A, cf. (3.32). This time we use
Vwa,v: me if 1y = min(ve,vs),
A(u1,u2,u3) (m1,ma2,m3) ‘= { 0(V2 vs) (ma.ms) otherwise, (3.34)

for the specific value of mq as chosen in Substep 5.1. In all other cases we put Az = 0. Then

ext hy |S) B(R?)[|7 < Cy || Als), ,bl|

— min(ve,v3)(r1— vo(ro—E)4ug(rg—L a/p
= 1 Z Z glmin(vz.vs)(ri=1/p)tva(ra=)+vs(ra=3)la Z "Y(Vz,v3)(m2,m3)‘p>

v2=013=0 (ma,m3)€Z2
© B . a1 qa/p
- < Z Z olva(ri—=1/p)+va(ra—3)+va(rs p)}fI< Z ‘,Y(VQ’VS)(mQ’mS)‘P>
vo=0v3=r2 (ma,m3)€Z?
00 0o q/p
-1 _1 _1
+ Z Z olva(ri=1/p)+va(ra—3)+va(rs p)]fI< Z |,y(y2’y3)(m27m3)|17> >
v3=01vo=r3+1 (ma2 ,m3)EZ2
rotri—1.rs ro,r3+ri—2 q
< G llvlspe b+ I lsng P bll)
ro+r —l,r' r2,T3+T -1 q
< G (llhalspy "TBE+1m ISy TBERY)

Hence, also in this situation we have an appropriate extension of g;. The modifications for an

extension of go and g3 are obvious. ]

Remark 3.11. The reader may notice that the only possible failure of linearity of the extension

operator comes from the (generally non-linear) decomposition of g into g = g1 + g2 + gs.

It remains to consider the limiting cases where at least one of the r; equals 1/p. We concentrate

on the more simple situation where 0 < p,q < 1.
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Proposition 3.12. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated
with O by (1.1), (2.8) and (2.10).
Let 0 < p,q < 1. Then the statement of Theorem 3.10 remains true without the assumption

rz#l/p; 2:17273

Proof. The proof of Theorem 3.10 extends to the present situation since in Substep 3.2 one can

work with ¢1 = g9 = 0. O

Remark 3.13. Proposition 3.12 does not extend to values of p larger than 1. In analogy to the

two-dimensional situation, cf. [Vy3] for details, more complicated spaces occur. We omit details.

3.5 Traces of Lizorkin-Triebel Spaces

Now we turn to the Lizorkin-Triebel classes. To prove an analog of Theorem 3.10 for these spaces
we can proceed in the same way as in case of the Besov spaces. We shall describe the needed

modifications only.

Theorem 3.14. Let O be an orthogonal basis of I' and let R;,i = 1,2,3 be matrices associated
with O by (1.1), (2.8) and (2.10). Let 0 < p < 00 and 0 < ¢ < co. Let ¥ = (r1,79,73) € R with

. 1
min(ry, 79, r3) > max <—,O'pq> . (3.35)
p
Then
tro € £(S),F(RY), Sy F(RTLR?) + Sy F(RG L R?) + S F(RFLRY) ). (336)

Conversely, to each function g € SpZ F(RyY,R?) + SpL F(Ry 1, R?) 4+ SpL" 2 F(R3 Y R?) there
exists a function [ € S;qF(R?’) such that trp f = g.

Proof. We shall use the same notation as in the proof of Theorem 3.10.
Step 1. Boundedness. In Step 1 of the proof of Theorem 3.10 we simply change the letter B to F.
In Step 2 nothing is to change and we concentrate on Step 3 now. We have to prove that

7 [spg * FIT < el Mspig™ ™ £l (3.37)

p,q p,q

with some ¢ independent of A.

Instead we shall prove a pointwise inequality. So, first we fix a point (29, 23) € R?. Then there
is only one element (mg,m3) € Z2 such that X(va,3) (mo,ms) (T2, 73) = 1. We denote v(,, ;) =
V(va,vs) (ma,msy)- Similarly, for each ¥ = (11, v, v3), there is a unique m (V) = (m1, ma, m3) such that
X (1 o) (m1,ma,ms) (T1, T2, 73) = 1 and M € By. We denote Ay = Ay

Substep 2.1. Let r1 > 1/p and 0 < ¢ < 1. Then

min(va,v3) q min(v2,v3)
"7(1/2,1/3)|q = < Z |)‘(u1,u2,1/3)|> < Z ‘)\(Vl,VQ,I/3)‘q7
v1=0 v1=0

25



and
p/q

o8] fe’e) fe’e) p/q
Z 2[u2r2+u3r3]qw(y2’y3)|q < (Z Z 2[y2r2+u3r3]q|)\V|Q> .

vo,v3=0 v1=0r2,v3=11

To continue we distinguish two cases. Let 0 < p < ¢g. Then

<Z Z 2[1/zr2+u3r3]Q|)\y|Q)pq S Z( Z 2[V2r2+u3r3]Q|)\V|Q>pq

v1=0v2,v3=11 v1=0 \r2,v3=r1
e’} 0 P/q
—uir -
< 2 : 9—VIT1P E : 2[u1r1+vzr2+u5ra}q|)\g‘q )
v1=0 v2,V3=r1

Now let 0 < g < p < 0co. With 0 < & < rip — 1 and applying Holder’s inequality we find

N N p/a - o p/q
(Z Z 2[y2r2+u3r3}qv\y‘q> < ¢ ZZ—VI(TIP—5)< Z 2[V1r1+u2r2+u37“3]q|)\1,|q>
v1=0v2,v3=11 v1=0 v2,V3=r1
- o p/q
< ¢ Z 91 ( Z 2[y1r1+1/2r2+u37“3}£I|)\V|(I> .
v1=0 v2,V3=V1

Substep 2.2. If ¢ > 1 we use triangle inequality

min(ve,v3)

< i 2[u2r2+u3r3]q ( Z |)\7|>Q>1/q§ i( f: 2[1/27‘2+u3r3](I|)\7|Q>1/q

v,v3=0 v1=0 v1=0 ‘vo,v3=11
0o 00 1/q
< Z 9—ViT1 < Z 2[V1T1+V2T2+V3T3](I|)\V|‘I> .
v1=0 V2,V3=V1

Ifo<p<l1

min(va,v3) )

( i 2[u2r2+u3r3}q( Z p\g‘)q)p/qS iz_ump< Z

p/q
2[u1r1+u2r2+u3r3}¢1|)\7‘Q>
va,v3=0 v1=0 v1=0 v2,V3=V1
follows. If p > 1 we apply again Hoélder’s inequality and find

min(v2,v3)

( i olvaratvsrslg ( Z |>\u|)q)p/q§0iQ_VI(T1P_€)< i 2[u1r1+u2r2+1/37"3}q|)\y|fI>p/q

v2,v3=0 v1=0 v1=0 v2,Va=r1
0o 00 p/q
< ¢ Z 2—1/1< § : 2[V1r1+uzr2+V3?“3]Q|)\y|q> .
v1=0 v2,V3=V1

Substep 2.3. Summarizing in all situations we have found

- p/q . . p/q
Z 2[V2r2+u3r3]Q|,Y(V2 V3)|q <c Z 91 < Z 2[V1r1+u2r2+1/37“3]Q|)\y|Q) , (3.38)

va,v3 =0 V1 =0 Vo, V3=r1

where ¢ does not depend on A\. We have to show that this inequality implies (3.37). For fixed

(z2,x3) we choose a sequence of intervals I,,, such that

=0, un#uv, |, | > c27
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for some ¢ > 0 and
{(a:l,acg,xg): xlelyl}Cng, veYy, mEeBy.

Then (3.38) implies

. p/q
< Z 2[1/21”2+V37“3]q‘,-)/(y27y3) X(VQ,VB) (ma2,ms3) (.’EQ, x3)“1>

vo,r3=0

- p/q
< Z 2[V1T1+V2r2+'/3r3]q‘)\7XU(IL’l,IEQ,IL’S)‘q) dxy.

v2,V3=V1

o
< CZ/I
V1

v1=0

Integration with respect to xo and x3 completes the proof of the boundedness of try f1. The rest is
the same as in the B-case.

Step 2. The extension. Here the same construction as in the B-case can be applied, cf. Substep
5.1 of the proof of Theorem 3.10. O

The above proof can be used also in case that some of the r; coincide with 1/p, at least under

additional restrictions on p and q.

Proposition 3.15. Let O be an orthogonal basis of I' and let R;,1 = 1,2,3 be matrices associated
with O by (1.1), (2.8) and (2.10).

Let 0 < p < min(1,q). Then the statement of Theorem 3.14 remains true under the weaker
restriction

1

min(ry, e, r3) > and min(ry,r2,73) > 0pg-

Remark 3.16. A final remark. In the general situation of the Besov-Lizorkin-Triebel spaces we
have proved a full counterpart of Theorem 2.9. In fact, it is not only a counterpart. Based on
the identities S5W (R?) = S5 ,F(R?) = S5, B(R?) (in the sense of equivalent norms) we have given
a new proof of Theorem 2.9. Because of SZW(RS) = S;QF(R?’), 1 < p < o0, (also in the sense
of equivalent norms) Theorem 3.14 contains the extension to Sobolev spaces of dominating mixed
smoothness with p different from 2. However, we do not have counterparts of Theorems 2.11 and
2.13, respectively. Here a good description of the spaces Spi"> A(R,R?) in terms of atoms would

be desirable, see Lemma 2.2(iii) for the Fourier-analytic counterpart.
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