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Course Requirements

m Complete a lab assignment and submit a report (mandatory
for exam).

m The final exam is a written test.
m You must score at least 50% to pass.
m No aids (calculators, notes, etc.) are allowed during the exam.
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MATLAB

m MATLAB is a proprietary programming language and numeric
computing environment developed by MathWorks.

m Numerous examples of control system’s analysis in MATLAB
will be given throughout the lecture:
m Plotting time/frequency response curves
m Finding closed-form analytical solutions of various responses

m Analyzing control system’s stability
‘\ MATLAB
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https://www.mathworks.com/products/matlab/getting-started.html

MATLAB
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4.356 s"3 + 10.44 s"2 + 20.8 s + 10

Continuous-time transfer function.

»> figure; % oteviit nove okno
>> step(T) % zobrazenl pfechodové charakteristiky reg.ocbvodu
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MATLAB

m Learning or understanding MATLAB syntax is not required.

m CTU student can (need to verify for ERASMUS students !!):

m download MATLAB at https://download.cvut.cz

m use Windows terminal server at PCLabs.fjfi.cvut.cz
(logon with MS\username) via remote desktop

m MATLAB Toolboxes used:

m Symbolic Math Toolbox
m Control Systems Toolbox
m System Identification Toolbox



https://download.cvut.cz/

Recommended Textbooks

Modern Control Engineering Control Systems Engineering
2002, P.N. Paraskevopoulos 7t Ed., 2015, Norman. S. Nise

Norman 3. Nise

CONTROL SYSTEMS
ENGINEERINIS

I Saventh Edition |
. —
[
[

MODERN
CONTROL
ENGINEERING
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http://sairam.edu.in/wp-content/uploads/sites/6/2023/09/Modern-Control-Engineering.pdf
https://gnindia.dronacharya.info/EEE/5thSem/Downloads/ControlSystem/Books/CONTROL-SYSTEM-REFERENCE-BOOK-2.pdf

Course Syllabus

Basic concepts in control theory
Basic system classification
Basic system properties
System ldentification

Basic types of controllers
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Course

Contro
Contro
Contro

Syllabus

quality evaluation
systems stability
ler design methods

Digital control
Sensors
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Why Study Control Systems?

m Control systems are everywhere in modern life:

m Stabilized voltage power supplies (e.g. wall adapters, laptop chargers)

Washing machines and dishwashers

Room thermostats

Autonomous vehicles and drones

Robotics and industrial automation

Biomedical devices (prosthetics, insulin pumps)

Spacecraft and aerospace

12RSEN Control Systems and Sensors
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Why Study Control Systems?

m As technology progressed, it became necessary to ensure that
the output of a controlled system follows a specified value and
temporal behavior in response to the given input signal.

m Example: Reflow soldering oven IS

10 s max.

Temp. Peak temperature: 260°C
le—m N\ More than 255°C 30 s max.

Temperature rising rate: 3°C/s max.
Temperature decreasing rate:
More than 217°C 6°C/s max.
. 60to150s

200°C

150°C

Jreheating: 6010 120 ¢ Temperature measurement point: A3

resin surface temperature

25°C

|<7 Time: 8 min max. to peak ———— Time
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https://www.amazon.com/T962A-Automatic-Infrared-Substrate-Soldering/dp/B0CY22TJ35?th=1
https://www.ablic.com/en/semicon/support/package/solder-temp-profile/

Why Study Control Systems?

m Sensors, also known as
transducers, are an essential
part of any control system or
circuit. Understanding how
these components interact is
crucial.

( Temperature @

Moisture @

( Light (o)
= \53
(e ()

Noise @?

m Sensors convert physical
guantities into electrical
signals (voltage, resistance,
current).
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Types of Sensors

Chemical
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®
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i ,
Accelero-
a meters
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https://dzone.com/articles/type-of-sensors-and-actuators-in-iot

Why Study Control Systems?

m Even 2000 years ago, humans
developed control mechanisms like

Clepsydra (water clocks) — Ancient
feedback-based timekeeping

\a\i\_lﬂﬁ\_ﬂhh;;i‘ii RITES

=

il
5
1
iq E

m Until the year 1656, these were the most
accurate and widely used instruments
for measuring time (replaced by the
pendulum clock)
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https://www.hellenic.org.au/post/water-clocks-and-whistling-wakeups

Why Study Control Systems?

m The milestone of feedback systems was Watt's centrifugal
governor (regulator) developed in 1788.

FIG. 4.—Governor and Throttle-Valve. G G SR BTN RTINS RNIE. [FROET.YIEW)
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https://en.wikipedia.org/wiki/Centrifugal_governor
http://vintagemachinery.org/mfgindex/imagedetail.aspx?id=3226

Course Syllabus

m Basic concepts in control theory
m Key Terms and Concepts
m Basic Structure of a Control System

12RSEN Control Systems and Sensors 15



Basic concepts in control theory
Key Terms and Concepts

System (Plant)

m A system consists of subsystems and processes (or plants) assembled
for the purpose of obtaining a desired output with desired
performance, given a specified input.

m In simple terms: A collection of components we want to control
m Examples: robot arm, car engine, home heating system...

u(t) V(1)
> System >

Excitation

input

Response
oulput
cause e ﬁect
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Basic concepts in control theory

Key Terms and Concepts

m Car engine subsystems
m Starter

Ignition

Air intake

Fuel

Exhaust

Cooling

Electrical

Control

Diagnostic...

12RSEN Control Systems and Sensors

Fuel, exhaust, and emission control systems

positive vacuum  microprocessor barometric-pressure sensor fuel tank
crankcase sensor R (inside passenger compartment)
ventilation - fuel-tank
PG I operated cap
(PCV) valve velve _7
throttle- P N
. position :
air-
sensor
Cleaner
housing

vapour
muffler

supply
catalytic line

. ) converter exhaust
intake-air = heated-intake pipe
preheater ; f el manifold charcoal

hose injector T

exhaust gas
exhaust-oxygen recirculation crankshaft engine-coolant
sensor (EGR) valve position sensor  temperature sensor
17


https://www.alamy.com/stock-photo-fuel-exhaust-and-emission-control-systems-25485645.html

Basic concepts in control theory
Key Terms and Concepts

Dynamical System

m Any system that changes with time (its quantities and variables
change with time).

m Its current state and output depend not only on the immediate input but
also on its previous (or initial) state.

m The total response is a combination of the system's natural response
(how it dissipates or acquires energy) and its forced response
(dependent on the input).

12RSEN Control Systems and Sensors 18



Basic concepts in control theory
Key Terms and Concepts

Control Theory

m [s a field of engineering and applied mathematics that uses feedback
to influence the behavior of a system in order to achieve a desired

outcome.

m The goal is to create a model or algorithm that governs the system
Inputs to guide the system to
an ideal state while reducing ___J comoter Yy sustem Yo
delay and assuring control
stability. I

12RSEN Control Systems and Sensors
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Basic concepts in control theory
Key Terms and Concepts

m Control theory has evolved over time, categorized into:
m Classical Control
m Modern Control
= Intelligent Control

m Today, classical and modern control theory approaches to
system modeling and control are deeply intertwined and
frequently integrated in practice.

12RSEN Control Systems and Sensors
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Basic concepts in control theory
Key Terms and Concepts

Classical Control Theory
m Based on input-output behavior (black box approach)

m Primarily focuses on Single-Input Single-Output (SI1SO) linear, time-
Invariant systems

m Based on the use of mathematical models that describe the dynamics
of a system using transfer functions.

m Focuses on the frequency domain analysis of system stability,
response, and performance using tools such as Bode plots, Nyquist
plots, and root locus.

m Also called: frequency domain or transfer function-based approach

12RSEN Control Systems and Sensors 21



Basic concepts in control theory
Key Terms and Concepts

Modern Control Theory
m Based on internal state variables

m Can handle Multiple-Input Multiple-Output (MIMO), nonlinear, time-varying,
and uncertain systems
m Uses analytical approach and require more advanced mathematical tools:
m Lyapunov functions, Hamilton-Jacobi equations, and Riccati equations
m Focuses on the state-space representation of the system

m This method uses a set of first-order differential equations (state equations) to
describe a system

m This provides a more complete description by involving state variables that reveal
the system's internal structure

m Also called: state-space or time domain approach

12RSEN Control Systems and Sensors 22



Basic concepts in control theory
Key Terms and Concepts

State, State Variables

m The state of a dynamic system is the smallest set of variables called state variables
that, along with the current time, are necessary to completely determine the behavior
of the system.

State Space

m The state space is the n-dimensional space whose axes (dimensions) are the state
variables, containing all possible values for each of n state variables

State Vector

m |tis a vector whose elements are state variables.

m [he specific state of the system at any given time can be expressed as a state
vector.

12RSEN Control Systems and Sensors 23



Basic concepts in control theory
Key Terms and Concepts

State space example

m Object with mass m subject to Newton’s law moving along a straight
trajectory
F(t) =m-a(t)

m State space can be modeled with 2 state variables:

m position and velocity or position and momentum

o adsx(@®)  dv(®)  dp(d)
F)=m—m=m —— =4

dx(t)
dt

d?x(t) . :
= Wwhere a(t) = ———is acceleration, v(t) =

and p(t) = m - v(t) is momentum

is velocity, x(t) is position,
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Basic concepts in control theory
Key Terms and Concepts

State space example
m System is described by a coupled set of first-order equations

d);it) - % as vectors d [X (t) @
? =| m
d
P po o] e
with initial condition: [x(0) p(0)]" = [x(O) . %(0):T

m The state at a given time is the vector

[x(©) p(O]
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Basic concepts in control theory
Key Terms and Concepts

Intelligent Control Theory
m Fuzzy Logic Control
m Adaptive Control
m Atrtificial Intelligence (Al)

m  Machine Learning
m  Neural Networks (Artificial Neural Networks)
m Deep Learning Neural Networks
» Convolutional Neural Networks
* Recurrent Neural Networks
» Transformer Networks
m Reinforcement Learning

m Al's formal origins are traced to the 1956 Dartmouth Summer Research Project on

Artificial Intelligence

12RSEN Control Systems and Sensors
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https://ebiquity.umbc.edu/paper/html/id/1199/A-Proposal-for-the-Dartmouth-Summer-Research-Project-on-Artificial-Intelligence

Basic concepts in control theory
Key Terms and Concepts

Control Engineering (Control Systems Engineering)

m Engineering discipline that applies control theory to design and
develop systems with desired behaviors.

m This involves designing, analyzing, and optimizing control systems.

12RSEN Control Systems and Sensors
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Basic concepts in control theory
Key Terms and Concepts

Cybernetics

= An interdisciplinary field that study universal principles | Cybernetics
of control and communication regardless of the

specific nature of the system (biological, mechanical, AR
. | in THE ANIMAL and THE MACHINE
social, etc.).

m Cybernetic concepts (like feedback and regulation) 'f | B NormT wimNER
were formalized into classical control theory. ot e

m Founder: Norbert Wiener (wrote a book Cybernetics or
Control and Communication in the Animal and the
Machine in 1948)

pologists, psychiatrists, and physicists.
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Basic concepts in control theory
Key Terms and Concepts

Automation, Automatic Control

m Area of science and technology focused on the use of technology to
perform task without human intervention.

m Automation is linked to the development of almost every form of
technology.

m Examples: industrial automation (robotics), home automation (home
assistants), business automation (content management, document
processing)
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Basic concepts in control theory
Key Terms and Concepts

Actuator

m Is a component that converts a control signal into a physical action or
motion, effectively doing desired mechanical action in response to a
command.

m The actuator is typically considered part of the plant (the physical
system being controlled).

m Examples: electric motor, servo motor, stepper motor, solenoid valve,
piezoelectric actuator
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Basic concepts in control theory
Key Terms and Concepts

Steady-State and Transient Response

A

Input command ¢

N

Elevator location (floor)

[

12RSEN Control Systems and Sensors

Transient
response

4_>

| !

Steady-state Steady-state
response error

Elevator response

Time
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Basic concepts in control theory
Key Terms and Concepts

Steady-State and Transient Response

m WWhen we apply an input to a system, the system doesn'’t instantly
reach the final value.

m That reaction has two parts:
m Transient Response — the initial reaction of the system as a function of time

m Steady-State Response — the long-term behavior after the system has settled
and stopped changing significantly

m Steady-state error is the difference between the desired output and
the actual output of a system after it has settled (i.e., in steady state).
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Course Syllabus

m Basic concepts in control theory
m Key Terms and Concepts
m Basic Structure of a Control System
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Basic concepts in control theory
Basic Structure of a Control System

m Control systems can be divided into two categories:
m Open-loop systems (without feedback)

r(t) uct) vt
»  Controller ——» System >

m Closed-loop systems (with feedback)

r(t 4 4
& —»{ Controller u—()u System Y >

|
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Basic concepts in control theory

Basic Structure of a Control System

m  Open-loop systems (without feedback)

ry

»  Controller

u(t)
—»

Svstem

m r(t) — Setpoint, Reference, Command signal = the input to the Controller

m u(t) — Control signal = the input to the System

m  Y(t) — Process or Controlled Variable, Desired Response, Output = the output of the System

vy
>

m The typical characteristic of an open-loop system is that it cannot compensate for system model uncertainties or

any disturbances that add to the control signal or output.
m Disturbances are undesirable inputs (external or internal to the control system)
m Examples: Simple washing machines, Light switches, Toasters, Traffic lights

12RSEN Control Systems and Sensors
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Basic concepts in control theory
Basic Structure of a Control System

m Simple washing machine (1970s)
m Example of open-loop system
m Core element: programmer/timer

m Controls the sequence and duration of
different wash cycles, including filling,
washing, rinsing, and spinning.

r(t l . , 3
¥ | Programmer _ “() »| Washing chhme vy Washing Machine Timer (Programmer)
Reference (controller) Control (system) Washed
signal signal clothes
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https://www.ebay.co.uk/p/3049217904

Basic concepts in control theory

Basic Structure of a Control System

m Closed-loop systems (with feedback)

rt)

Controller

u)
—

|

System

Y
>

m A closed-loop system uses feedback to automatically compare the actual output with

the desired value and adjust its actions to minimize this error.

m Key idea: The output y(t) affects the input u(t), i.e. u(t) is a function of y(t)
m Examples: Thermostat, Cruise Control in a Car, Servo Motor

12RSEN Control Systems and Sensors
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Basic concepts in control theory
Basic Structure of a Control System

m Servo Motor
m Example of closed-loop system
m Uses position or speed feedback to produce motion in response to a command

m Part of servomechanism — a closed-loop control system designed to accurately
control position, speed, or torque of a mechanical system using feedback.

Gear system

"} ' Output

| shaft

meter
I Error

signal

Input Command Signal

Amplifier
12RSEN Control Systems and Sensors
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https://aamerminhas91.blogspot.com/2021/03/servo-motor-applications-of-servo-motor.html
https://www.electronicwings.com/sensors-modules/servo-motor

Basic concepts in control theory
Basic Structure of a Control System

m Open-loop and Closed-loop system comparison

Open-loop systems Closed-loop systems
Simple design and implementation High accuracy and precision

Low cost (fewer components) Automatically compensates for
disturbances

Advantages No need for sensors or feedback Stable and reliable performance
under varying conditions

Fast response (no feedback delay)  Can control complex or nonlinear
systems

12RSEN Control Systems and Sensors
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Basic concepts in control theory

Basic Structure of a Control System

m Open-loop and Closed-loop system comparison

Open-loop systems

No automatic error correction

Poor accuracy if conditions change
Disadvantages Cannot handle disturbances

Limited to predictable, simple tasks

12RSEN Control Systems and Sensors

Closed-loop systems
More complex design and tuning
Higher cost (sensors, controllers)

Risk of instability if not designed
properly

Slower response due to feedback
loop
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Basic concepts in control theory
Basic Structure of a Control System

m Closed-loop control system

[nput
or —

Reference

Input

transducer

Summing
junction

_i.@_.
By

Error
or

Actuating

signal

Disturbance 1

Controller

.
_t.®_.

Summing
junction

Disturbance 2

Process
or Plant

.
_1@7__

Control Systems Engineering 7" Ed., p. 7
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Output
transducer |-=
or Sensor

Summing
junction

Output
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Controlled
variable
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Basic concepts in control theory
Basic Structure of a Control System

m Closed-loop control system

m Aclosed-loop system is a control system that uses feedback to compare the actual output
y(t) (process/controlled variable) to the desired input r(t) (setpoint, reference/command
signal) and adjusts its actions to minimize the error e(t) = y(t) — r(t).

m Input transducer converts the form of the input r(t) to that used by the controller.

m The controller drives a plant with a control signal u(t) based on the value of the error signal
e(t) so that this error is minimized.

m Disturbances are added to the controller and process outputs via summing junctions, which
yield the algebraic sum of their input signals using associated signs.

m The output of the plant is converted by a sensor to the form that is used by the controller.
m  Summing junctions yield the algebraic sum of their input signals using associated signs.
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Course Syllabus

Basic system classification
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Basic system classification

Linear / Nonlinear Control Systems

Time Variant / Time Invariant Control Systems
Causal / Noncausal Control Systems
Deterministic / Stochastic Control Systems
Continuous-time / Discrete-time Control Systems

m Significant portion of control theory, particularly classical
control, is founded on linear, time-invariant (LTl) systems or
those that can approximates as such.
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Basic system classification
Linear Control Systems

m Necessary and sufficient condition for linearity is
superposition principle characterized by two properties:

m Additivity
m fx(8) - y1(8) and x,(t) = y,(¢), then x;(t) + x,(t) = y1(t) + y2(¢)

m Homogeneity (scaling)
m If x;(t) = y;(t) and a is a constant, then ax, (t) = ay,(t)

12RSEN Control Systems and Sensors
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Basic system classification
Linear Control Systems

m In alinear system, when a sinusoidal input signal is applied, the
output will also be sinusoidal at the same frequency, but with
potentially different amplitude and phase.

m Linear systems are mathematically well-behaved, making them

easier to analyze and design using tools from linear algebra and
calculus:

m Vectors, matrices, and linear transformations
m Differentiation, integration, Taylor series expansion

m Linear mathematical operations:
m Differentiation, integration, Fourier or Laplace transformation
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Basic system classification
Time Invariant Control Systems

m Time-invariant systems are systems whose parameters do not
change with time.

m A system is considered time-invariant when its output response to a
given input does not depend on when that input is applied.

m If you shift the input signal x(t) in time by T seconds, the output
signal will also be shifted by the same amount, but its shape will
remain the same.

Ifx(t) >y () thenx(t—T) - y(t—T)
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Basic system classification
Time Variant Control Systems

m Most physical systems are time-varying due to aging, but within a certain time
interval they can be considered time-invariant.

m Examples of time-variant systems:
m missiles with varying fuel levels
m aircraft flying through a wide range of altitudes, where the lift may change with altitude
m robotic arm with changing payload, where the dynamics change as the robot picks up or
drops objects
m s the system time-invariant or time-variant?
my()=2-x({t)+x(t—1)
my(&)=t-x(t)+x(t—1)
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Basic system classification
Causal Control Systems

m Principle of Causality
m It's a fundamental concept in science.
m Every event has a cause and that causes precede their effects.

m Asystem is causal if its output at any time t depends only on
the present and past values of the input — not the future.

m All physical system must be causal.
m Example of noncausal system: y(t) = x(t) + x(t + 1)

12RSEN Control Systems and Sensors
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Basic system classification
Deterministic Control Systems

m Adeterministic control system is one in which the output is

fully determined by the input and system dynamics — there’s
no randomness involved.

m Fully described by models — can use differential equations or
transfer functions to model behavior exactly.

m No probabilistic behavior or random noise in system
equations.

12RSEN Control Systems and Sensors
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Basic system classification
Stochastic Control Systems

m Stochastic control systems involve random or uncertain
elements, such as noise or unpredictable disturbances.

m Stochastic control methods use probabilistic models to
describe the system's behavior and optimize the control input
to achieve the desired outcome on average.

m Mathematical models use:

m random variables, variance, standard deviation, probability density
functions, stochastic differential equations
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Basic system classification
Continuous-Time Control Systems

m Continuous-Time Systems, often referred to as analog systems,
operate with input and output signals that are continuous functions of
time.

m Time is treated as a continuous variable and signals are defined at every
instant of time.

m  We use differential equations to describe and design such systems.

m  Many physical systems naturally exhibit continuous behavior. Their state
(e.g., temperature, position, pressure) changes smoothly over time in
response to inputs.

m e.g. analog electrical circuits, motors, room heating and cooling, robotic arm
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Basic system classification
Discrete-Time Control Systems

m Adiscrete-time control system is a control system where signals are

processed, measured, and updated at specific time intervals, not
continuously.

m [ime progresses in steps and the system works with sequences of data
rather than smooth curves.

m Difference equations are used to describe and design such systems.

m Examples:

m digital thermostat, switching power supplies, digital motor drives, digital
communication systems, robot controlled by microcontroller
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Basic system classification
Discrete-Time Control Systems

m A control system can be partly discrete and partly continuous, and it is
then called a hybrid system or sampled-data system, but it is still
discrete-time system.

m They require Analog-to-Digital (A/D) and Digital-to-Analog (D/A)
converters to transform continuous-time signals into discrete-time signals
and back.

m Control systems designed in the continuous domain are often
discretized (e.g., using zero-order hold) to approximate the continuous

plant for digital simulation or design — then the system is still discrete-
time control system.
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Course Syllabus

m Basic system properties
m Static Characteristics
m Dynamic Characteristics

12RSEN Control Systems and Sensors
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Basic system properties

[nput

or —=
Reference

Input

transducer

Summing
junction

—t.@_»
)

Error
or
Actuating

signal

Controller

Summin
junction

Disturbance 1

Process
or Plant

Output
transducer

Control Systems Engineering 7" Ed., p. 7
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or Sensor
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Basic system properties
Static and Dynamic Characteristics

m Static characteristics describe a system’s behavior under
steady-state conditions — when the input and output are not
changing over time.

m Dynamic characteristics describe how the system responds
to changing inputs over time.

12RSEN Control Systems and Sensors
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Basic system properties
Static Characteristics

m Static characteristics describe a system’s behavior under
steady-state conditions

m Static characteristics define the relationship between the

steady-state output y and the input x with algebraic equation
expressed as y = f(x).

m Static characteristic can be:
m linear y = a - x + b (straight line)
m nonlineary =a-x%?+b-x+c,y = sin(x), etc. (arbitrary curve)
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Basic system properties
Static Characteristics

DC Motor Static Characteristic
Speed (rpm) vs. Applled Voltage (V)

4000 e Statlc Characteristic (0.5V intervals) -—--—-—--—-—g ----------------------------------------- 0:-"+"--
————— Saturation Limit e |
3000 Dead Zone °
————— Saturation Region Start °
2000+ °
! °
‘c 1000¢ ' °
Q ' i e
; 0 e o o
o | o
& —1000 .
i [ )
—2000 , .
| .
—3000F °
e | | :
T2 S S — N SUS E S— S—
-4 -2 0 2 4
Voltage (V)
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Basic system properties
Static Characteristics

m Most of the physical systems have nonlinear static
characteristics.

m Nonlinear equations are difficult to solve, analytical solution is
often impossible, must use numerical methods.

m Nonlinear equations are commonly approximated by linear
equations — this is known as linearization around the

operating point.
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Basic system properties
Static Characteristics

m Linearization of nonlinear static )
characteristic: .
m using the first order Taylor series expansion i
around the operating point x, ~f(x)

m we assume small variations around this
point

Output

- Oox

S(xp)

(k)
Ty (x) = zf (@ )( — a)k: fla+f'(a)(x—a) Input
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Basic system properties
Static Characteristics

m  Common Nonlinearities in Static Characteristics:
m Dead zone — No output for small inputs !
m Saturation — Output stops increasing
m Hysteresis — Output depends on input history 2
u

N N N
o N o~
1

p lacement /um

Backlash — Slack in mechanical response 1 -
12 A
10 -
Operating pitch circles / 2 "
= 6
) \\‘ \‘\ RS "
§ QY z
& Q.J \ ] :
Backlash 0 10 20 30 40 50 60 7ODri\8,2VO?thge1/03
Backlash in gears Piezo actuator Hysteresis curves of a piezo actuator
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Course Syllabus

m Basic system properties
m Static Characteristics
m Dynamic Characteristics
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Basic system properties
Dynamic Characteristics

m Dynamic characteristics describe how the system responds to changing inputs over
time.

m For continuous-time systems, dynamic characteristics are expressed using linear
Ordinary Differential Equations (ODEs) with constant coefficients:

any™ +an_ 1y + o+ ary' +agy =
b ul™ + b u™ VD + .o+ byu’ + byu

m  where y(t) is the output, u(t) is the input, a,, b,, are real constants

m Systems modeled by these equations are known as linear time-invariant (LTI)
systems.
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Basic system properties
Dynamic Characteristics

m For causal physical system m < n (input’s derivatives cannot
be higher than the output’s derivatives).
any™ + @y 1y + ot ayy’ + agy
= b ul™ + by u™™D + ...+ biu' + byu
m To find unique solution for ODEs you need to specify initial

conditions:

m we need information about y(t) and its n — 1 derivatives at the initial
time, e.g. att = 0:

y(0),y®(0),y@(0), ...,y (0)
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Basic system properties
Dynamic Characteristics

m Solution of a ODE has two components: particular solution
y,(t) and homogeneous solution y, (t)

y(t) = yp(t) + yp(t)

m Homogeneous solution (natural response of the system) is
the solution with the input set to zero, that is u(t) = 0.

any™ +ap_ 1y + o+ ayy’ +agy =0

m Particular solution (forced response of the system) is the
solution of the same form as the input.
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Basic system properties
Dynamic Characteristics

Dynamic characteristics described by the ODEs are used for the
description, analysis, and design of control systems.

The process of building mathematical models from observed input-
output data of a dynamic system is called system identification.

We are interested in how the output quantity depends on the input
quantity.

System identification can be approach in various ways:
m Analytically (Physical modeling)
m Experimentally (Experimental modeling)
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Last Lecture Overview
Introduction to Control Systems

m  Why Control Systems?
m Found in everyday technology: appliances, vehicles, robotics, biomedical devices, aerospace.
m Goal: Ensure system outputs follow desired values and behaviors despite disturbances.

m Key Concepts
m System (Plant): Collection of components to be controlled (e.g., car engine, heating system).
m Dynamical Systems: Behavior changes with time; total response = natural + forced.
m Control Theory: Uses feedback to guide systems toward stability and desired outcomes.
m Types of Control Approaches:
m Classical (frequency-domain, transfer functions, SISO)
m Modern (state-space, MIMO, nonlinear)
m Intelligent (Al, adaptive, fuzzy, neural networks)
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Last Lecture Overview
Control System Structures & Properties

m  Open-loop Systems (no feedback)
m  Simple, low cost, fast but cannot handle disturbances.
m  Example: old washing machine.

m Closed-loop Systems (feedback)
m Uses sensors + feedback to minimize error.
m High accuracy, disturbance rejection, stability.
m Example: thermostat, cruise control, servo motor.

m System Classifications

Linear vs. Nonlinear
Time-invariant vs. Time-variant
Causal vs. Non-causal
Deterministic vs. Stochastic
Continuous-time vs. Discrete-time

m  System Properties
m Static: Steady-state input-output relation (linear/nonlinear, linearization, nonlinearities like hysteresis/backlash).
m  Dynamic: Time-dependent behavior, described by ODEs (natural + forced response).
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Basic system properties
Dynamic Characteristics — Analytical System Identification Example

m \Voltage, current, and charge relationships for resistors, capacitors, and inductors

Component Voltage-current Current-voltage Voltage-charge
L[ (t |
_{ E V() = Z/ i(t)dr (1) = CM V(t) = i,q(r)
Capacitor J0 G ¢
. | lq
MA= v =ri )= () ) =RY
Resistor at
/ OOOO \ | di(t [t | Plt
v(t) = LT) (1) = —/ vit)dt — v(t) = L q.(, )
[nductor dl Lo dr
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Basic system properties
Dynamic Characteristics — Analytical System Identification Example

m \Voltage, current, and charge relationships for resistors, capacitors, and inductors

The relationship between current and voltage in a capacitor is derived from the fundamental definition of
capacitance q(t) = Cv(t) and the definition of electric current i(t) = dq(t)/dt.

The resistor current-voltage relationship is Ohm's Law, derived from experimental observations, which states
that the voltage across a resistor is directly proportional to the current flowing through it, with the resistance R
being the constant of proportionality, expressed as v(t) = Ri(t).

The fundamental relationship for an inductor v(t) = L%(tt) is derived from Faraday's Law of Induction, which

states that the induced voltage in any closed circuit is equal to the negative of the time rate of change of the
magnetic flux through the circuit v;,,4,c0q(t) = —d®/dt.

The negative sign indicates that the induced voltage opposes the change in flux (Lenz's Law).

In circuit convention, we define terminal voltage across the inductor such that this minus cancels

v(t) = —Vinqucea (t)-

For an inductor, the magnetic flux @ it produces is directly proportional to the current i(t) flowing through it
@ = Li(t), here, L is the inductance, a constant value dependent on the inductor's physical properties.
di(t)

Combining the Laws we get the fundamental relationship for an inductor as v(t) = —vingucea(t) =L -
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Basic system properties
Dynamic Characteristics — Analytical System Identification Example

m Derivation of the differential equation of an ideal RC circuit
m Applying Kirchhoff's Voltage Law ug (t) + up(t) = u(t)
t

. [, B
Ri(t) + Ej i(t)dt = u(t)

0
m We want capacitor voltage u,(t) to be the output quantity

uc(t) = %joti(r)dr - i(t) = Cdu;t(t) + 5 ’

duc(t)

RC o + uc(t) = u(t)
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Basic system properties
Dynamic Characteristics — Analytical System Identification Example

m  Kirchhoff’s Voltage Law (KVL) — states that the algebraic sum of all the voltage
differences (voltage drops) around any closed loop in a circuit is zero.

m This law is a fundamental principle in circuit analysis, based on the conservation of
energy.

m Aclosed loop is a path in a circuit that starts and ends at the same point, without
leaving the circuit.

m |n aclosed-loop electrical circuit, conventional current flows from the positive terminal
to the negative terminal of the power source, forming a complete path for the flow of
electric charge.

m  When traversing a loop, a voltage rise (e.g., from a voltage source) is typically
considered positive, while a voltage drop (e.g., across a resistor or capacitor) is
considered negative.

m  So, applying Kirchhoff's Voltage Law we get u(t) — ug (t) — u-(t) = 0, rearranging we
get ug(t) +uc(t) = u(t)
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Basic system properties
Dynamic Characteristics — Analytical System Identification Example

m Derivation of the differential equation of an ideal RC circuit, where
up(t) is the output quantity.

1 t
Ri(t) + —j i(t)dt = u(t)
0

C
m Resistor voltage ui (t) = Ri(t) = i(t) = uRR(t)
1 (fug(7)
ug(t) + EJO P dr = u(t)
dup(t 1 du(t
ur(t) b (t) = u(t)

dt RC dt
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Basic system properties
Dynamic Characteristics

m Ordinary Differential Equations (ODEs)

m (Laplace) Transfer Function

m is the ratio of the Laplace transform of a linear, time-invariant (LTI) system's output to the Laplace
transform of its input, assuming zero initial conditions

m Impulse Response

m is the system's output when its input is a unit impulse function (Dirac delta function), assuming zero initial
conditions

m Step Response
m is the system's output when subjected to a unit step input (Heaviside function)

m  Frequency Response / Fourier Transfer Function / Frequency Transfer Function

m is the ratio of the Fourier Transform of the output signal to the Fourier Transform of the input signal,
assuming zero initial conditions
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Basic system properties
Dynamic Characteristics — Fourier Transform

m Fourier Transform is a linear integral transform with kernel e=/®t
m Forward Fourier Transform:

FIF©) = FGo) = [ feotde
m Inverse Fourier Transform:
FHUF(w)} = f(t) = %f F(jw)e!®tdw

m where f(t) is time domain signal, F(jw) is spectrum (complex-valued
function of frequency), e/t is the kernel of the transform, w is angular
frequency in radians (w = 2nf, where f is the frequency in Hz)
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Basic system properties
Dynamic Characteristics — Fourier Transform

m Converts a time-domain signal into a frequency-domain
representation.

m Useful for analyzing signals and systems in terms of sinusoids.

m Function f(t) must satisfy some conditions in order to have a
Fourier transform (Dirichlet’s conditions):

m Absolutely integrable condition ffooolf(t)ldt < o0

m Piecewise continuous condition — it must have at most a finite
number of maxima, minima, and discontinuities in any finite interval.
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Basic system properties
Dynamic Characteristics — Fourier Transform

= Absolutely integrable condition [~_|f(t)|dt < oo

m Functions that decay to zero fast enough (like exponentials,
Gaussians, pulses) are absolutely integrable.

1 || <1
0 otherwise

f)=e fy=e" f@ =

fit)
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Basic system properties
Dynamic Characteristics — Fourier Transform

= Absolutely integrable condition [~_|f(t)|dt < oo

m Functions that stay non-decaying (constants, sinusoids, polynomials)
are not absolutely integrable.

GE {‘1) '3 F(©) = sin(®) F(o) = ¢

————————————————
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Basic system properties
Dynamic Characteristics — Fourier Transform

m Absolutely integrable condition f f@®ldt < o
m We can still use classic integral definition of the Fourier transform applied to some of
not absolutely integrable functions by using windowing.

m Multiplying f(t) by a special window function that is non-zero for a finite period and
zero everywhere else, will create a new, non-periodic S|gnal that is now absolutely
integrable.

Wmdow Functlons g

m Window functions: T e
m Hanning w(t) = 0.5 — 0.5 cos (Zné) ,0<t<T

s Hamming w(t) = 0.54 — 0.46 - cos (2n§),0 <t<T

m Blackman w(t) = 0.42 — 0.5 - cos (Zn%) +
0.08 - cos (4nL),0 <t<T
T—-1
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Classic integral definition of the Fourier transform:
j f(t)e Iotdt
m  We introduce a dampening factor (a decaying exponential e~°%) and change

lower limit of integral to 0 (assuming casual system where response begins at
t = 0 after an input is applied)

Joof(t)e_“te_j“’tdt

m  We can group the real dampening factor ¢ and the imaginary frequency term jw
into a single complex variable s =0 + jw

J f(t)e (otio)tqgy —>]oof(t)e‘5tdt
0 0
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Basic system properties
Dynamic Characteristics — Laplace Transform

m The standard definition of the Laplace Transform:
LPO) =F6) = | foee
0
m Inverse Laplace Transform:

L THF ()} = f(t) = iJHJ.OOF(S)eS"LdS
B - 2mj o= joo

m where f(t) is time domain signal, F(s) is complex-valued function
of complex frequency, s = o + jw is a complex number, often called
complex frequency, w is angular frequency, o is a real number
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Laplace frequency domain is just a complex plane (s-domain,
S'plane) Imaginary axis

J A

s-plane

S=0+jw

» 0 Real axis
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Basic system properties
Dynamic Characteristics — Laplace Transform

m The rectangular pulse in s-domain
s-Domain

Time Domain

5 0 A
: Real Part " Q ;‘,;o;;.,
B - OO JONOY S SR SO SO SO TS
g1 Lap, il -
= : : : s et
% N Y FTTT P dce tr ansfo rm 535}%%5‘35
: H H £E b g Oy 0
Q: . --------------- . , oL B 0
5 | ] St
i s i i
T T T T T T T il
. I,
Time = E;_if-'-’gfzill L
T et 3
"*fff:i, “\";‘;‘

Imaginary axis (Jw)

Amplitude

Frequency
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Basic system properties
Dynamic Characteristics — Laplace Transform

m For the integral to converge f(t) must satisfy the following
conditions:
m Exponential order condition — there must exist constants M > 0,
a € R such that
If ()| < Me%, forallt >0

m Piecewise continuity on every finite interval — f(t) must not have
infinitely many discontinuities in any finite interval.
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Properties and Theorems of the Laplace Transform
m Linearity — if F;(s) = L{f1(t)}, F,(s) = L{f,(t)}, c; and ¢, are
constants, then
L{cif1(t) + c2f2(0)} = c1F1(8) + 2 F,(s)
m Laplace transform of the derivative of a function (Differentiation
theorem)

df (t)] _
5{7} = sF(s) — f(0)

r {dzf (t)

g } = s?F(s) — sf(0) — fV(0)
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Properties and Theorems of the Laplace Transform
m The Laplace Transform of the Integral of a Function (Integration

theorem)
t
L{J f(r)dr} = 1F(S)
0

T s
m Initial Value Theorem
}:irr(} f(t) = lim sF(s)

S—00

m Final Value Theorem
L}im f(t) = lir% SsF(s)
— 00 S—
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Table of Laplace Transforms

FO) =L {F(s) F(s) = L{7(6)} o tsin(at) 2
11 L e
' ‘ 10. ¢ cos(at) <o
. tcos(a
& —la y ) ( t) . ( t) 233
. B n! . sin(at) — at cos(a: 2
3.0, n=1,2,3,... peve (82 +a?)
A Pp>_1 I'(p+1) 12. sin(at) + at cos(at) 20
- tp gp+l ' (8 +a?)”
VT s(s?—a’
5 Wt —3 13. cos(at) — at sin(at) ( 2)
287 (8% +a?)
6 nt 193 1-3-5---(2n—1) /x s (2 + 3a?)
-t o n=1,2,3,... 2,13“4_% 14. COS(ﬂ.t) + at Si.l](ﬂ.t) 3
! (a2 +a2)
7. sin(at) = 3 in(b b
s +a? 15. sin(at + b) ssin(b) + & cos(b)
(at) g o
8. cos(at U ;
g2 | a 16 cos(at + b) scos(b) — asin(b)
g2 + a2
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Laplace Transform Example

m Differential equation of an RC circuit

d
RC “;t(t) Fus () = u(t)

m Apply Laplace transform, using differentiation theorem (u,.(0) = 0)
RCsUq(s) + U (s) = U(s)
(RCs+ 1)U,(s) = U(s)

Uc(s) =

RCs + 1
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Laplace Transform Example

m Apply a step input u(t) = Uyh(t), where U, is a step voltage, h(t) is a
Heaviside function and assuming L{h(t)} = 1/s

Ug
U = U(s) =
c(s) RCs +1 () s(RCs + 1)
m Do a partial fraction decomposition
Un(s) = Uy —A+ B _UO_I_—RCUO_Ul " 1
)T S(RCs+1) s RCs+1 s "RCs+1 °s 0

5= (—7g)

m Apply inverse Laplace transform assuming L{e%'} = ﬁ and L{h(t)} =1/s
1

uc(t) = Uy — er_ﬁt
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Laplace Transform Example
m Step response of RC circuit with Uy =5V, R=1kQ, C =1mF

m What will be the value of the response attime t = 0 s ? Use the Initial
Value Theorem

Uo
hmf(t) Sll_)rgo sF(s) = Sll—glOSS(RCS 1)

m What will be the steady state value of the response (at time t — o0) ?
Use the Final Value Theorem

Uo
11m f(t) = hmsF(s) = £%SS(RCS ey

=0

=UO
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Basic system properties
Dynamic Characteristics — Laplace Transform

m Laplace Transform Example

m Step response of RC circuit with Uy =5V, R=1kQ, C =1mF

1 ) ) )
——t Step Response of RC Circuit (Capacitor Voltage
u-(t) = Uy — Uye RC P Response of AT Hreult (Capacitor Volta ge)

uc(t) =5—5et

4}

S 3|
%I
> 2f
1_
ot | . | | —_ Finelllvalue=5IV
0 1 2 3 4 5
Time (s)

12RSEN Control Systems and Sensors 92



Basic system properties
Dynamic Characteristics — Laplace Transform

m Laplace Transform MATLAB Example

Ug
S(RCs+1)

m Inverse Laplace transform of U,-(s) =

clear all; % clears the workspace
syms s R C U 0; $ definition of symbolic variables
UC=1U0/s/(R*C*s+1l) % definition of the Laplace transform of RC circuit ODE

h = ilaplace(U C) % inverse Laplace transform
pretty (h) % display prettier result

m Display the step response of an RC circuit with Uy =5V, R = 1 kQ,

C =1mF

vars = [R C U 0]; % definition of symbolic variables for substitution

values = [1000 0.001 5]; % numeric values for symbolic variables

h = subs(h, vars,values) % substitute symbolic variables by the numeric values

fplot(h, [0,5]) % plot the response for t = 0..5s
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Course Syllabus

m Basic system properties
m Static Characteristics
m Dynamic Characteristics
Ordinary Differential Equations (ODEs)
Transfer Function
Step Response
Impulse Response
Frequency Response
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Basic system properties
Dynamic Characteristics — Transfer Function

m Nth order, linear, ordinary differential equation:
any™ + an 1y + o+ agy’ +agy =

b u™ + b u™ D ...+ bu' + byu

m where y(t) is the output, u(t) is the input, a,,, b,,, are real constants

m Taking the Laplace transform of both sides, assuming zero initial
conditions:
(@ s+ a,_1s" P+ tas+ay) - Y(s) =
(b S™ + byyy_1s™ L+ -+ bys+ by) - U(s)
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Basic system properties
Dynamic Characteristics — Transfer Function

m (Laplace) Transfer Function is the ratio of the Laplace
transform of a linear, time-invariant (LTI) system's output to the
Laplace transform of its input, assuming zero initial conditions

Y(s) bys™+by_1s™ "+ -+ bys + by

G(s) =

m It is often represented as a block diagram

Ut(s) | (s™ + by S™ 4+ by)

U(s) a,s"+a, {s"1+--+a;s+a

Y(s)

(_a”S” + a”_lS}I—l - ao)
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Basic system properties
Dynamic Characteristics — Transfer Function

m Transfer Function Example — RC Circuit
m The Laplace transform of an RC Circuit ODE is

Ucls) = pes 771V
m The transfer function is
U-(s 1
L0

U(s) RCs+1
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Last Lecture Overview
Dynamic System Modeling & Transforms

m  Analytical System Identification

m Derived governing equations for electrical elements:
m  Resistor: v(t) = Ri(t) (Ohm’s Law)
m  Capacitor: i(t) = Cdv(t)/dt
m Inductor: v(t) = Ldi/dt
m  Kirchhoff’s Voltage Law: Sum of voltages in a closed loop = 0.

m  RC-Circuit Modeling

RCED 4y (£) = u(t) — 1% order ODE.
t

m Step-input solution: u,(t) = U, — Uye Rc
m lllustrated initial (0 V) and final (U,) values via Initial/Final Value Theorems.

m  MATLAB Example: Used ilaplace() and fplot() to derive and visualize the step response.

m  Key Dynamic Responses
m Impulse response: Output for unit impulse input.
m Step response: Output for unit step input.
m  Frequency response: Ratio of output/input in frequency domain.
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Last Lecture Overview
Fourier & Laplace Transforms and Transfer Functions

m Fourier Transform
m Converts time signals < frequency domain.
m Forward: F{f (t)} = F(jw) = [__ f(t)e /@tdt
m Requires absolutely integrable, piecewise continuous signals.
m Windowing (Hanning, Hamming, Blackman) makes non-decaying signals integrable.

m Laplace Transform
m Extends Fourier by adding decay term e~ %%, s = 0 + jw
s Forward: L{f(t)} = F(s) = [, f(D)e~*'dt
m Properties: Linearity, Differentiation/Integration theorems, Initial & Final Value theorems.

m Transfer Function: G(s) = %

Core representation of linear time-invariant (LTI) systems in the s-domain.
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Basic system properties

Dynamic Characteristics — Block Algebra

m Block algebra is a set of reduction rules used to reduce the
complex diagram to a single block representing the overall

system’s transfer function.

m Fundamental reductions rules:
m Blocks in series
m Blocks in parallel
m Feedback loops

12RSEN Control Systems and Sensors
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Basic system properties
Dynamic Characteristics — Block Algebra

m Blocks in series (in cascade)

Xo X Xy Xo Xy

— | Ki(8) 1 Ko(S) [ mm — Ki(s) Kys) ——

B X(s) = Ky(s) Xo(s)
B Xy(S) = Ky(s)X4(s)
m Overall transfer function X,(s)/X,(s) = K,(s)-K,(s)
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Basic system properties
Dynamic Characteristics — Block Algebra

m Blocks in parallel

> K1(S) N — XO X3
Xy — X X; mmm —— | Ki(8)+Kys) ——
| Ko(s) 2 +

X1(8) = Ky(s)Xo(s)

Xo(8) = Ky(s) Xo(s)

X3(s) = Xq(s) + Xy(s)

Overall transfer function X;(s)/X,(s) = K(s) + K4(s)
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Basic system properties
Dynamic Characteristics — Block Algebra

m Feedback loops

XO K'I(S) > X2 - XO R K1(S) X2 R
T — THR,(5)Ko(S)
3

_ K,(s) forward path transfer function
X1(S) - XO(S) — XB(S) K,(s) feedback path transfer function
XZ(S) = K1(S) ' X1(S) K,(s)K,(s) loop gain

X3(s) = Ky(s) - Xy(s)
Overall transfer function X,(s)/X,(s) = K;(s)/(1 + K;(s)K,(S))
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Basic system properties
Dynamic Characteristics — Block Algebra

m Block Diagram Reduction Example

R(s) C(s)
S oy IS oy B oy B
_ +A _

Hl',(t'&'} [~
Hy(s) |-
Hg'f.'&'} [~

Control Systems Engineering 71" Ed., p. 243
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Basic system properties

Dynamic Characteristics — Block Algebra

m Block Diagram Reduction Example

WO PR i G(5)Ga(s) ),
H\(s) — Hy(s) + Hs(s) =
(b)
R(s) G3(5)Ga(5)G(9) C(s)
- |

12RSEN Control Systems and Sensors

I + G3(5)GA()[H (5) — Ho(s) + Hi(s)]

Control Systems Engineering 71" Ed., p. 243
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Characteristic polynomial — is the denominator of a transfer function

U(S) |bpyys™ + -+ bis+by | Y(s)
> >
a,s"+ -+ ay;s+ay

m Characteristic equation — is formed by setting the characteristic polynomial to zero

m T[he roots of the characteristic equation are the system's poles
m These roots determine the stability of the system
m They dictate the system’s transient response characteristics
m The system’s order is equal to the total number of poles

U(S) R bm (S - Zm) (S - Zl) Y(S):
an (s —pn) - (s —p1)

m Roots of the numerator polynomial are called system’s zeros
m They influence transient behavior
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Basic system properties
Dynamic Characteristics — Poles and zeros

m |f we factor the numerator and denominator polynomials we
get the following form of the transfer function:

biS™ + by 18T+ o+ bys+ by by (S — Zy) e (S — 241)
a,s"+a,_;s" 1+ -+ a5+ ag B a, (s —pn) (s —p1)

m Wwhere z,, are system’s zeros and p,, are system’s poles

m Poles and zeros can be real, purely imaginary or complex
conjugate.

G(s) =
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Basic system properties

Dynamic Characteristics — Poles and zeros

m Pole-zero plot / map / diagram

12RSEN Control Systems and Sensors

Imaginary Axis

o

Pole-Zero Map

> poles
O zeros
X
X o
X
-1.5 -1 -0.5 0 0.5 1
Real Axis
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https://gnu-octave.github.io/pkg-control/pzmap.html

Basic system properties
Dynamic Characteristics — Poles and zeros

Im(s)
. AN
m Left half-plane is - -
stable region ys~" X 1 X— FEH
m Right half-plane is . |
unstable region ; _
= Imaginary axis is X — ——
the boundary . ' \;
X - X
< > >
Stable region Unstable region
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Basic system properties

Dynamic Characteristics — Poles and zeros

m Real poles cause aperiodic system response

G(s) = i one pole p = =5

Pole-Zero Map
2 T T T
15T
ooy
2]
g
5
8 05
1]
&
5 [0 e B ]
)
-
g
E 4}
15T
-2 L
-6 -4 2 0 2 4 6

Real Axis {seconds'1}

Amplitude

= =]
o — P

0.06

0.04

0.02

1L B 3

Step Response RS LWICEISEA!
.a-"’-f;;--

02 04 06 08 1 12 14 16 18

Time (seconds)
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Real poles cause aperiodic system response

G(S)Zs+5

m MATLAB Code to generate pole-zero map and step response

clear all; % clears the workspace

s = tf('s"'"); % definition of symbolic variable

G=1/ (s +5); % definition of the transfer function
pzmap (G); % plot pole-zero map

figure; $ create new window for the next plot

step(G); % plot the step response
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Negative real poles are reciprocals of the time constants of a
system
1

Di

m \What is the time constant of an RC circuit with the transfer
function ?

Ti —

G(s) =

RCs + 1
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Complex conjugate poles cause oscillatory response

Step Response
G s) = 0.07 . : ,
() s%+ 2s + 25 ool 1\
Complex conjugate poles oosl |\
p=—-1xj49 A g oo
y :%c.c:j
;ﬁ; _____________________________________________________________________________________________________ 0.02

e Time (seconds)
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Complex conjugate poles cause oscillatory response

G(s) =
(5) s2 4+ 2s+ 25

m MATLAB Code to generate pole-zero map and step response

clear all; % clears the workspace

s = tf('s"'"); % definition of symbolic variable

G=1/ ("2 + 2*s + 25); % definition of the transfer function
pzmap (G); % plot pole-zero map

figure; $ create new window for the next plot

step(G); % plot the step response
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit example
m Applying Kirchhoff’s Voltage Law up(t) + uy (t) + up(t) = u(t)

d;(t) += fo i(D)dT = u(t)

m Capacitor voltage u,(t) is the output quantity

ue() = = f tl(T)dT Si()=C d“C(”
0

Ri(t) + L

C
duc(t)

RC 7 +LC C() + u-(t) = u(t) (t)ﬁi} D T u_c(t)
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit example

m Apply Laplace transform, using differentiation theorem with zero
Initial conditions

RCsU-(s) + LCs?Uq(s) + Ug(s) = U(s)

(RCs + LCs? + 1)U(s) = U(s)

Uc(s) 1

U(s) LCs®+RCs+1 R L

u(t)ﬁD @ CT u_ct)
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit example

m RLC circuit transfer function
1

LCs? + RCs + 1
m The transfer function of a standard second-order control system

2 2
kws; kws;

s? 4+ 2{w,s + a),% - (s +{w, —jwyg)(s + (w, +jwy)

G(s) =

G(s) =

where w,, is a natural frequency, C is a damping ratio, w; = w,,/1 — (% is
damped natural frequency, and k is a system gain
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Natural frequency w,, (undamped frequency) — the angular frequency at which
the system would oscillate if there were no damping

m Damping ratio/factor/coefficient { — a dimensionless number that determines
how quickly oscillations in a system's response decay

= yndamped systemif { =0

= underdamped systemif 0 < (< 1
= critically dampedif (=1

= overdamped systemif ( > 1

m Damped natural frequency w, — the angular frequency at which the system
oscillate in the presence of damping
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Second-order response as a function of damping ratio

Undamped

(=0

12RSEN Control Systems and Sensors

Underdamped

0<i<1

r

Critically damped

(=1

t

Overdamped

(> 1
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit example
1 1/LC kw?

ICs2+RCs+1 s2+R/Ls+1/LC  s2 + 20w, + w2

G(s) =

m Comparing the transfer functions of an RLC circuit and a standard
second-order control system we get the following parameters:

m Natural frequency w,, = \/%

m Damping ratio { = g %

m Systemgaink =1
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit example

1 ~ 1 _ —RC £ /(RC)?~4LC
LCs2+RCs+1 (s —py)(s— pz)'pl’2 - 2LC

G(s) =

m Now substitute specific values for RLC constants
a) R=100 Ohm,L=10H, C =200 uF
b) R=500 Ohm,L=10H, C =200 pF

— u_c(t)

R L
U(t) qt) i(t) ) C -

12RSEN Control Systems and Sensors
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit (R=100 Ohm,L =10 H, C =200 uF)

1
G( ) _ 1 _ E _ 500 Pole-Zero Map
T ICs?+RCs+1 ,.R_ . 1 s2+10s4+500 . °
S + S + lee 15+ 21.8i
L LC ~ 157 Damping: 0.224
5 0 0 ‘Tg 10 b Overshoot (%): 48.6

_ Frequency (rad/s): 22.4

(s+5—j21.8)(s+5+21.8)

m Damping ratio is ¢ = g\/% = 0.2236

1

m Natural frequency w,, = N 22.36rad/s S
Real Axis {seconds'1)

m Damped natural frequency w; = w,/1 — (¢ = 21.8rad/s
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Basic system properties

Dynamic Characteristics — Poles and zeros

m ldeal series RLC circuit (R=100 Ohm, L =10 H, C =200 uF)

Step Response

-

1.50 | .
increasing k Im{s}‘ i / N\ .
| _
_____ wd = Wy 1- (;2 \'. €
Xl \/ |II II\II /
I » — #=sin"1( . \ )
| \
increasing ¢ I |
| Re(s) |
—(Wy = —0 = |II
| f
| 05r |
| III" ’ :
! | T=0.288s
;{ _____ — Wy / w,=21.8rad/s
OLI 1 1
0 0.2 0.4
u(s) 500 Y(s)
_> - ] _>
12RSEN Control Systems and Sensors (s+5—j21.8)(s+5+,21.8)

0.6

Time (seconds)

0.8

1.2
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit (R=100 Ohm, L =10 H, C =200 uF)

m MATLAB Code to generate pole-zero map and step response

clear all; % clears the workspace

s = tf('s'"); % definition of symbolic variable

L = 10; C = 200e-6; R = 100;

G =1/(L*C*s"2 + R*C*s + 1); % definition of the transfer function
pzmap (G); $ plot pole-zero map

figure; % create new window for the next plot

step(G); % plot the step response

hold on; % place the next plot in the same figure

syms t; % define symbolic variable t

fplot (exp (-R/2/L*t)+1); % plot exponential decay function
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit (R=500 Ohm,L =10 H, C =200 uF)

1
G(s) = 1 B iC B 500 B
>’ TICs2+RCs+1 , . R__. 1 s2+505+500
S +LS+LC

500
(s +36.2)(s + 13.8)

m Damping ratio is ¢ = g\/% = 1.12
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Basic system properties
Dynamic Characteristics — Poles and zeros

m ldeal series RLC circuit (R =500 Ohm, L =10 H, C =200 pF)

Pole-Zero Map Step Response

1 : . I

1

0.8 1 09 1
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c
3 02F 0.6
2 gt

=
w by — L
3 0 X ® E. 05
£

> -02¢ <
®
=
2 -04r
£

-06

081

_1 1 1 1 1 1 1 1 | | | |
-40 -35 -30 -25 -20 -15 -10 -5 0 0.2 0.3 0.4 0.5 0.6
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Basic system properties
Dynamic Characteristics — Poles and zeros

m Ideal series RLC circuit (R=500 Ohm,L =10 H, C =200 uF)

m MATLAB Code to generate pole-zero map and step response

clear all; % clears the workspace

s = tf('s'); % definition of symbolic variable

L = 10; C = 200e-6; R = 500;

G = 1/(L*C*s”"2 + R*C*s + 1); % definition of the transfer function
pzmap (G); % plot pole-zero map

figure; $ create new window for the next plot

step(G); % plot the step response
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Course Syllabus

m Basic system properties
m Static Characteristics
m Dynamic Characteristics
Ordinary Differential Equations (ODEs)
Transfer Function
Step Response
Impulse Response
Frequency Response
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Basic system properties
Dynamic Characteristics — Step Response

m Step response is the output of a system when subjected to a
step input, like unit step function (Heaviside function)

u(t) = {(1) £>9 e ;

t < 0 1.0;— O

m Laplace transform of the step function |
1
L{u(t)} = B
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https://en.wikipedia.org/wiki/Heaviside_step_function

Basic system properties
Dynamic Characteristics — Step Response

U(s) = 1/s Y (s TN
/ 1 G(S) ( )= [

m From the transfer function definition

% ol
G(s) = Uig ->Y(s) =G(s)U(s)

Amplitude

m Analytical step response function K R T T TR R

¥() = 6(5)- ~ (0 = h()) = £ {6(9) ]
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Basic system properties
Dynamic Characteristics — Step Response
m Step response of an RLC circuit (R =100 Ohm, L=10H, C =200 pF)

U(s)=1/s 500 Y(s)
s2 4 10s + 500

m Analytical step response function

(6) = h(t —L‘l{G()l}—L‘l 00 1
y(t) = h(t) = >SS T s2 +10s +500s

=1—e" [COS(S\/_t) + \/_Sln(S\/_t)]
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Basic system properties
Dynamic Characteristics — Step Response

m Step response of an RLC circuit (R =100 Ohm, L =10 H, C = 200 uF)

U(s)=1/s 500 Y(s)
s2 4 10s + 500

m MATLAB Code to calculate the inverse Laplace transform

clear all; % clears the workspace
syms s; % definition of symbolic variable

L = 10, C = 200e-6; R = 100;

G =1/(L*C*s"2 + R*C*s + 1); % definition of the transfer function
h = ilaplace(G/s); % calculate inverse Laplace transform
pretty(h); % prints symbolic expression in more readable format
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Course Syllabus

m Basic system properties
m Static Characteristics
m Dynamic Characteristics
Ordinary Differential Equations (ODEs)
Transfer Function
Step Response
Impulse Response
Frequency Response
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Basic system properties
Dynamic Characteristics — Impulse Response

m Impulse response is the output of a system when subjected
to an impulse input function (Dirac delta function)

co t=20

5(t) = {O t# 0 such that ff°oo6 (t)dt =1

m In practical implementations Dirac delta is ]---gc -
approximated with inputs that have small
duration (small enough compared to the
system’s dynamics) and finite amplitude.

- N(),
o~
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Basic system properties
Dynamic Characteristics — Impulse Response

m Laplace transform of the impulse input function
L{5()} =1
m Relation to Heaviside step function u(t)

5(t) =2 and u(e) = [* §(x)dr
m Time shifted Dirac delta function 5(t — 1)

S(t —ty) = {fo i i ig such that [~ & (t — to)dt = 1

m Laplace transform of the time-shifted impulse

function © ”
L{5(t — ty)} = e Sto
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Basic system properties
Dynamic Characteristics — Impulse Response

m The sifting (sampling) property of the Dirac delta function
(extracting the function's value at a specific point t;)

to

| r@s - e = £t
—® 6(t — to)I
m Representing a signal as a sum of weighted to

and shifted Dirac deltas is directly related to

how sampling is modeled in signal processing

(o) = j F)8(t - t)d | I | | |
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https://www.youtube.com/watch?v=Y8y965ZAmQE

Basic system properties
Dynamic Characteristics — Impulse Response

U(s) =1

A 4

G(s)

Y(s)

m From the transfer function definition

G(s) = @ - Y(s) =G(s)U(s)

U(s)

= Analytical impulse response function |
Y(s) = G()1 > y(®) = g(©) = LTHG()}
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Basic system properties
Dynamic Characteristics — Impulse Response

m Relation to the step response h(t)

m If you differentiate step response you get impulse response and vice versa, if you
integrate impulse response you get step response.

Impulse Response
‘ T

Amplitude
o - N w -~ [$2] [=2] ~ [52]

1 1 1
0.1 0.2 0.3 0.4
Time (seconds)

o
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Basic system properties
Dynamic Characteristics — Impulse Response

m MATLAB Code to show the relation between step and impulse response

clear all; % clears the workspace

s = tf('s'"); % definition of symbolic variable
L = 10; C = 200e-6; R = 500;
G = 1/(L*C*s"2 + R*C*s + 1); % definition of the transfer function

[g t] = impulse(G); % calculate impulse response from the transfer function and save values into

parameters of RLC circuit

O o

g,t variables
impulse (G); % plot impulse response
figure; % opens new, empty figure
plot (t,cumtrapz(t,g)); % plot the integral of the impulse response into newly opened figure
hold on; % next plot will be shown in the same figure

[h £t] = step(G); % calculate step response
plot(t,h,'r"); % plot step response (red) over the integral of the impulse response (blue)
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Basic system properties
Dynamic Characteristics — Impulse Response

m Impulse response of an RLC circuit (R =100 Ohm, L=10H, C =200 pF)

lia(t[t‘” U(S) =1 )

500

152+ 10s + 500

Y(s).

Impulse Response

m Analytical step response function

y(©) = g@) = L7HG(s)1}

B 100+/19
19

e tsin(5V19t)

12RSEN Control Systems and Sensors
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Basic system properties
Dynamic Characteristics — Impulse Response

= Impulse response of an RLC circuit (R =100 Ohm, L=10H, C =200 uF)

U(s)=1 500 Y(s)
s2 +10s + 500

m MATLAB Code to calculate the inverse Laplace transform

clear all; % clears the workspace

syms s; % definition of symbolic variable

L = 10, C = 200e-6; R = 100;

G =1/(L*C*s"2 + R*C*s + 1); % definition of the transfer function

g = 1laplace(G); % calculate inverse Laplace transform
pretty(g); % prints symbolic expression in more readable format
fplot (g, [0 1]); % draw plot of an impulse function
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Basic system properties
Dynamic Characteristics — Impulse Response

m Convolution

m Convolution is a very powerful technique that can be used to calculate
the response of a system to an arbitrary input by using the impulse
response of a system.

m Continuous time convolution is an operation on two continuous time
signals defined by the integral

(f * g)(©) = f F(g(t - Ddr

m Informally this notation f(t) * g(t) also denotes convolution
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Basic system properties
Dynamic Characteristics — Impulse Response

m Convolution

m Consider an LTI system whose input is time-shifted Dirac delta function then its
output is time-shifted impulse response.

5(t—1) ’

gt —1)

System

m Let f(t) be any input whose value att = 7 is f(7), then because of linearity, if we
scale the input by any factor, the output will be scaled by the same factor.

f@st—1) f@g(t—1)

System
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Basic system properties

Dynamic Characteristics — Impulse Response

m Convolution

m  Now we integrate both sides over all values of t

Joof(r)6(t —1)dT
—oo | System

| @t -nar

»
L

m Assuming the Dirac delta is even function §(t — 7) = §(t — t), at the input we have a signal
f(t) represented as a sum of weighted and shifted Dirac deltas and output is the convolution

integral.

f@) = Joof(f)cg(f —t)dt
—o0 | System

| @t -vdr = )

12RSEN Control Systems and Sensors
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Basic system properties
Dynamic Characteristics — Impulse Response

m Convolution

m The convolution integral states that the system is entirely characterized by its
response to a Dirac delta function, i.e. its impulse response g(t)

f (t) System
g(t)

ﬂ» y(t)=(f*g)(t)=j f(@)g(t—1)dr

m [he convolution is commutative

(f *g)(O) = (g * (D) = j g(Of (¢ - D)dr

m Convolution animation https://Ipsa.swarthmore.edu/Convolution/Cl.html

12RSEN Control Systems and Sensors
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https://lpsa.swarthmore.edu/Convolution/CI.html

Basic system properties
Dynamic Characteristics — Impulse Response

m Convolution theorem

m The convolution theorem states that the Laplace transform of the
convolution of two functions is equal to the product of their individual
Laplace transforms.

Li(f *9) ()} = F(s)G(s)
(f » g) (&) = L7HF (5)G(s)}
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Basic system properties

Dynamic Characteristics — Impulse Response

m Convolution Example — Convolution filters

m Fundamental building blocks in image processing and computer vision.

12RSEN Control Systems and Sensors

P

Output Matrix

Criginal Gaussian Blur Sharpen Edge Detection
0 0 0 1 1 2 1 0 -1 0 -1 -1 -1
0 1 0 16 2 4 2 -1 a2 -1 -1 8 -1
0 0 0 1 2 1 0 -1 0 -1 -1 -1
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https://www.linkedin.com/pulse/image-processing-convolution-filters-calculation-gradients-yadav
https://medium.com/analytics-vidhya/understanding-convolution-operations-in-cnn-1914045816d4

Basic system properties
Dynamic Characteristics — Impulse Response

m Convolution Example — Convolutional Neural Networks

m Atype of deep learning artificial neural network, primarily used for
image analysis and pattern recognition by identifying features from

images.
Convolution Neural Network (CNN)
i
Input / s
in <R

i

ey
\\\

Convalution Canvolution Convalution | I

+ 4 + T

Kernel Bell RelU EolU Flatten \ ¥}

Layer |

Fully "
Connecte
Feature Maps e
| 1 | | |
Feature Extraction Classification Probabilistic

Dristribaution
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