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Course Requirements
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■ Complete a lab assignment and submit a report (mandatory 
for exam).

■ The final exam is a written test.
■ You must score at least 50% to pass.
■ No aids (calculators, notes, etc.) are allowed during the exam.
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MATLAB
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■ MATLAB is a proprietary programming language and numeric 
computing environment developed by MathWorks.

■ Numerous examples of control system’s analysis in MATLAB 
will be given throughout the lecture:
■ Plotting time/frequency response curves
■ Finding closed-form analytical solutions of various responses
■ Analyzing control system’s stability

https://www.mathworks.com/products/matlab/getting-started.html
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■ Learning or understanding MATLAB syntax is not required.
■ CTU student can (need to verify for ERASMUS students !!):

■ download MATLAB at https://download.cvut.cz
■ use Windows terminal server at PCLabs.fjfi.cvut.cz

(logon with MS\username) via remote desktop

■ MATLAB Toolboxes used:
■ Symbolic Math Toolbox
■ Control Systems Toolbox
■ System Identification Toolbox

https://download.cvut.cz/
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Recommended Textbooks
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Modern Control Engineering
2002, P.N. Paraskevopoulos

Control Systems Engineering
7th Ed., 2015, Norman. S. Nise

http://sairam.edu.in/wp-content/uploads/sites/6/2023/09/Modern-Control-Engineering.pdf
https://gnindia.dronacharya.info/EEE/5thSem/Downloads/ControlSystem/Books/CONTROL-SYSTEM-REFERENCE-BOOK-2.pdf
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Course Syllabus
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■ Basic concepts in control theory
■ Basic system classification
■ Basic system properties
■ System Identification
■ Basic types of controllers
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Course Syllabus
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■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors
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Why Study Control Systems?
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■ Control systems are everywhere in modern life:
■ Stabilized voltage power supplies (e.g. wall adapters, laptop chargers)
■ Washing machines and dishwashers
■ Room thermostats
■ Autonomous vehicles and drones
■ Robotics and industrial automation
■ Biomedical devices (prosthetics, insulin pumps)
■ Spacecraft and aerospace
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Why Study Control Systems?
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■ As technology progressed, it became necessary to ensure that 
the output of a controlled system follows a specified value and 
temporal behavior in response to the given input signal.

■ Example: Reflow soldering oven

https://www.amazon.com/T962A-Automatic-Infrared-Substrate-Soldering/dp/B0CY22TJ35?th=1
https://www.ablic.com/en/semicon/support/package/solder-temp-profile/
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Why Study Control Systems?
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■ Sensors, also known as 
transducers, are an essential 
part of any control system or 
circuit. Understanding how 
these components interact is 
crucial.

■ Sensors convert physical 
quantities into electrical 
signals (voltage, resistance, 
current).

https://dzone.com/articles/type-of-sensors-and-actuators-in-iot
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Why Study Control Systems?
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■ Even 2000 years ago, humans 
developed control mechanisms like
Clepsydra (water clocks) – Ancient 
feedback-based timekeeping

■ Until the year 1656, these were the most 
accurate and widely used instruments 
for measuring time (replaced by the 
pendulum clock)

https://www.hellenic.org.au/post/water-clocks-and-whistling-wakeups
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Why Study Control Systems?
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■ The milestone of feedback systems was Watt's centrifugal 
governor (regulator) developed in 1788.

https://en.wikipedia.org/wiki/Centrifugal_governor
http://vintagemachinery.org/mfgindex/imagedetail.aspx?id=3226
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■ Basic concepts in control theory
■ Key Terms and Concepts
■ Basic Structure of a Control System

■ Basic system classification
■ Basic system properties
■ System Identification
■ Basic types of controllers
■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors



12RSEN Control Systems and Sensors

Basic concepts in control theory
Key Terms and Concepts
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System (Plant)
■ A system consists of subsystems and processes (or plants) assembled 

for the purpose of obtaining a desired output with desired 
performance, given a specified input.

■ In simple terms: A collection of components we want to control
■ Examples: robot arm, car engine, home heating system…
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Key Terms and Concepts

17

■ Car engine subsystems
■ Starter
■ Ignition
■ Air intake
■ Fuel
■ Exhaust
■ Cooling
■ Electrical
■ Control
■ Diagnostic…

https://www.alamy.com/stock-photo-fuel-exhaust-and-emission-control-systems-25485645.html
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Basic concepts in control theory
Key Terms and Concepts
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Dynamical System
■ Any system that changes with time (its quantities and variables 

change with time).
■ Its current state and output depend not only on the immediate input but 

also on its previous (or initial) state.
■ The total response is a combination of the system's natural response 

(how it dissipates or acquires energy) and its forced response 
(dependent on the input).
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Key Terms and Concepts
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Control Theory
■ Is a field of engineering and applied mathematics that uses feedback 

to influence the behavior of a system in order to achieve a desired 
outcome.

■ The goal is to create a model or algorithm that governs the system
inputs to guide the system to
an ideal state while reducing
delay and assuring control
stability.



12RSEN Control Systems and Sensors

Basic concepts in control theory
Key Terms and Concepts

20

■ Control theory has evolved over time, categorized into:
■ Classical Control
■ Modern Control
■ Intelligent Control

■ Today, classical and modern control theory approaches to 
system modeling and control are deeply intertwined and 
frequently integrated in practice.
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Basic concepts in control theory
Key Terms and Concepts
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Classical Control Theory
■ Based on input-output behavior (black box approach)
■ Primarily focuses on Single-Input Single-Output (SISO) linear, time-

invariant systems
■ Based on the use of mathematical models that describe the dynamics 

of a system using transfer functions.
■ Focuses on the frequency domain analysis of system stability, 

response, and performance using tools such as Bode plots, Nyquist 
plots, and root locus.

■ Also called: frequency domain or transfer function-based approach
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Basic concepts in control theory
Key Terms and Concepts
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Modern Control Theory
■ Based on internal state variables
■ Can handle Multiple-Input Multiple-Output (MIMO), nonlinear, time-varying, 

and uncertain systems
■ Uses analytical approach and require more advanced mathematical tools:

■ Lyapunov functions, Hamilton-Jacobi equations, and Riccati equations
■ Focuses on the state-space representation of the system

■ This method uses a set of first-order differential equations (state equations) to 
describe a system

■ This provides a more complete description by involving state variables that reveal 
the system's internal structure

■ Also called: state-space or time domain approach
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Basic concepts in control theory
Key Terms and Concepts
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State, State Variables
■ The state of a dynamic system is the smallest set of variables called state variables 

that, along with the current time, are necessary to completely determine the behavior 
of the system.

State Space
■ The state space is the n-dimensional space whose axes (dimensions) are the state 

variables, containing all possible values for each of n state variables
State Vector

■ It is a vector whose elements are state variables.
■ The specific state of the system at any given time can be expressed as a state 

vector.
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Basic concepts in control theory
Key Terms and Concepts
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State space example
■ Object with mass 𝑚𝑚 subject to Newton’s law moving along a straight 

trajectory
𝐹𝐹 𝑡𝑡 = 𝑚𝑚 � 𝑎𝑎 𝑡𝑡

■ State space can be modeled with 2 state variables:
■ position and velocity or position and momentum

𝐹𝐹 𝑡𝑡 = 𝑚𝑚
𝑑𝑑2𝑥𝑥 𝑡𝑡
𝑑𝑑𝑡𝑡2 = 𝑚𝑚 �

𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

■ where a 𝑡𝑡 = 𝑑𝑑2𝑥𝑥 𝑡𝑡
𝑑𝑑𝑡𝑡2

is acceleration, v 𝑡𝑡 = 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

is velocity, x 𝑡𝑡 is position,
and 𝑝𝑝 𝑡𝑡 = 𝑚𝑚 � 𝑣𝑣 𝑡𝑡 is momentum
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Basic concepts in control theory
Key Terms and Concepts
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State space example
■ System is described by a coupled set of first-order equations

𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

=
𝑝𝑝 𝑡𝑡
𝑚𝑚

𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝐹𝐹 𝑡𝑡

𝑎𝑎𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥 𝑡𝑡

𝑝𝑝 𝑡𝑡
=

𝑝𝑝 𝑡𝑡
𝑚𝑚
𝐹𝐹 𝑡𝑡

with initial condition: 𝑥𝑥 0 𝑝𝑝 0 𝑇𝑇 = 𝑥𝑥 0 𝑚𝑚 � 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

0
𝑇𝑇

■ The state at a given time is the vector
𝑥𝑥 𝑡𝑡 𝑝𝑝 𝑡𝑡 𝑇𝑇
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Basic concepts in control theory
Key Terms and Concepts
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Intelligent Control Theory
■ Fuzzy Logic Control
■ Adaptive Control
■ Artificial Intelligence (AI)

■ Machine Learning
■ Neural Networks (Artificial Neural Networks)

■ Deep Learning Neural Networks
• Convolutional Neural Networks
• Recurrent Neural Networks
• Transformer Networks

■ Reinforcement Learning

■ AI’s formal origins are traced to the 1956 Dartmouth Summer Research Project on 
Artificial Intelligence

https://ebiquity.umbc.edu/paper/html/id/1199/A-Proposal-for-the-Dartmouth-Summer-Research-Project-on-Artificial-Intelligence
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Basic concepts in control theory
Key Terms and Concepts
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Control Engineering (Control Systems Engineering)
■ Engineering discipline that applies control theory to design and 

develop systems with desired behaviors.
■ This involves designing, analyzing, and optimizing control systems.
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Key Terms and Concepts
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Cybernetics
■ An interdisciplinary field that study universal principles 

of control and communication regardless of the 
specific nature of the system (biological, mechanical, 
social, etc.).

■ Cybernetic concepts (like feedback and regulation) 
were formalized into classical control theory.

■ Founder: Norbert Wiener (wrote a book Cybernetics or 
Control and Communication in the Animal and the 
Machine in 1948)
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Basic concepts in control theory
Key Terms and Concepts
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Automation, Automatic Control
■ Area of science and technology focused on the use of technology to 

perform task without human intervention.
■ Automation is linked to the development of almost every form of 

technology.
■ Examples: industrial automation (robotics), home automation (home 

assistants), business automation (content management, document 
processing)
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Basic concepts in control theory
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Actuator
■ is a component that converts a control signal into a physical action or 

motion, effectively doing desired mechanical action in response to a 
command.

■ The actuator is typically considered part of the plant (the physical 
system being controlled).

■ Examples: electric motor, servo motor, stepper motor, solenoid valve, 
piezoelectric actuator
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Steady-State and Transient Response
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Steady-State and Transient Response
■ When we apply an input to a system, the system doesn’t instantly 

reach the final value.
■ That reaction has two parts:

■ Transient Response – the initial reaction of the system as a function of time
■ Steady-State Response – the long-term behavior after the system has settled 

and stopped changing significantly
■ Steady-state error is the difference between the desired output and 

the actual output of a system after it has settled (i.e., in steady state).
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■ Basic concepts in control theory
■ Key Terms and Concepts
■ Basic Structure of a Control System

■ Basic system classification
■ Basic system properties
■ System Identification
■ Basic types of controllers
■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors
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Basic Structure of a Control System
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■ Control systems can be divided into two categories:
■ Open-loop systems (without feedback)

■ Closed-loop systems (with feedback)
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Basic concepts in control theory
Basic Structure of a Control System
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■ Open-loop systems (without feedback)

■ r(t) – Setpoint, Reference, Command signal = the input to the Controller
■ u(t) – Control signal = the input to the System
■ y(t) – Process or Controlled Variable, Desired Response, Output = the output of the System

■ The typical characteristic of an open-loop system is that it cannot compensate for system model uncertainties or 
any disturbances that add to the control signal or output.

■ Disturbances are undesirable inputs (external or internal to the control system)
■ Examples: Simple washing machines, Light switches, Toasters, Traffic lights
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Basic concepts in control theory
Basic Structure of a Control System
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■ Simple washing machine (1970s)
■ Example of open-loop system
■ Core element: programmer/timer
■ Controls the sequence and duration of 

different wash cycles, including filling, 
washing, rinsing, and spinning.

Washing Machine Timer (Programmer)

https://www.ebay.co.uk/p/3049217904
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Basic concepts in control theory
Basic Structure of a Control System
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■ Closed-loop systems (with feedback)

■ A closed-loop system uses feedback to automatically compare the actual output with 
the desired value and adjust its actions to minimize this error.

■ Key idea: The output y(t) affects the input u(t), i.e. u(t) is a function of y(t)
■ Examples: Thermostat, Cruise Control in a Car, Servo Motor



12RSEN Control Systems and Sensors

Basic concepts in control theory
Basic Structure of a Control System
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■ Servo Motor
■ Example of closed-loop system
■ Uses position or speed feedback to produce motion in response to a command
■ Part of servomechanism – a closed-loop control system designed to accurately 

control position, speed, or torque of a mechanical system using feedback.

https://aamerminhas91.blogspot.com/2021/03/servo-motor-applications-of-servo-motor.html
https://www.electronicwings.com/sensors-modules/servo-motor
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Basic concepts in control theory
Basic Structure of a Control System
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■ Open-loop and Closed-loop system comparison
Open-loop systems Closed-loop systems

Advantages

Simple design and implementation High accuracy and precision
Low cost (fewer components) Automatically compensates for 

disturbances
No need for sensors or feedback Stable and reliable performance 

under varying conditions
Fast response (no feedback delay) Can control complex or nonlinear 

systems
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Basic concepts in control theory
Basic Structure of a Control System
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■ Open-loop and Closed-loop system comparison
Open-loop systems Closed-loop systems

Disadvantages

No automatic error correction More complex design and tuning
Poor accuracy if conditions change Higher cost (sensors, controllers)
Cannot handle disturbances Risk of instability if not designed 

properly
Limited to predictable, simple tasks Slower response due to feedback 

loop
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Basic concepts in control theory
Basic Structure of a Control System
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■ Closed-loop control system

Control Systems Engineering 7th Ed., p. 7
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Basic concepts in control theory
Basic Structure of a Control System
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■ Closed-loop control system
■ A closed-loop system is a control system that uses feedback to compare the actual output 

𝒚𝒚 𝒕𝒕 (process/controlled variable) to the desired input 𝒓𝒓 𝒕𝒕 (setpoint, reference/command
signal) and adjusts its actions to minimize the error 𝒆𝒆 𝒕𝒕 = 𝒚𝒚 𝒕𝒕 − 𝒓𝒓 𝒕𝒕 .

■ Input transducer converts the form of the input 𝑟𝑟 𝑡𝑡 to that used by the controller.
■ The controller drives a plant with a control signal 𝑢𝑢 𝑡𝑡 based on the value of the error signal 

𝑒𝑒 𝑡𝑡 so that this error is minimized.
■ Disturbances are added to the controller and process outputs via summing junctions, which 

yield the algebraic sum of their input signals using associated signs.
■ The output of the plant is converted by a sensor to the form that is used by the controller.
■ Summing junctions yield the algebraic sum of their input signals using associated signs.
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■ Basic concepts in control theory
■ Basic system classification
■ Basic system properties
■ System Identification
■ Basic types of controllers
■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors
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■ Linear / Nonlinear Control Systems
■ Time Variant / Time Invariant Control Systems
■ Causal / Noncausal Control Systems
■ Deterministic / Stochastic Control Systems
■ Continuous-time / Discrete-time Control Systems

■ Significant portion of control theory, particularly classical 
control, is founded on linear, time-invariant (LTI) systems or 
those that can approximates as such.
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Basic system classification
Linear Control Systems
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■ Necessary and sufficient condition for linearity is 
superposition principle characterized by two properties:

■ Additivity
■ If 𝑥𝑥1(𝑡𝑡) → 𝑦𝑦1(𝑡𝑡) and 𝑥𝑥2 𝑡𝑡 → 𝑦𝑦2 𝑡𝑡 , then 𝑥𝑥1 𝑡𝑡 + 𝑥𝑥2 𝑡𝑡 → 𝑦𝑦1 𝑡𝑡 + 𝑦𝑦2(𝑡𝑡)

■ Homogeneity (scaling)
■ If 𝑥𝑥1(𝑡𝑡) → 𝑦𝑦1(𝑡𝑡) and 𝑎𝑎 is a constant, then 𝑎𝑎𝑎𝑎1(𝑡𝑡) → 𝑎𝑎𝑎𝑎1(𝑡𝑡)
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Basic system classification
Linear Control Systems
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■ In a linear system, when a sinusoidal input signal is applied, the 
output will also be sinusoidal at the same frequency, but with 
potentially different amplitude and phase.

■ Linear systems are mathematically well-behaved, making them 
easier to analyze and design using tools from linear algebra and 
calculus:
■ Vectors, matrices, and linear transformations
■ Differentiation, integration, Taylor series expansion

■ Linear mathematical operations:
■ Differentiation, integration, Fourier or Laplace transformation
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Basic system classification
Time Invariant Control Systems
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■ Time-invariant systems are systems whose parameters do not 
change with time.

■ A system is considered time-invariant when its output response to a 
given input does not depend on when that input is applied.

■ If you shift the input signal 𝑥𝑥(𝑡𝑡) in time by 𝑇𝑇 seconds, the output 
signal will also be shifted by the same amount, but its shape will 
remain the same.

If 𝑥𝑥(𝑡𝑡) → 𝑦𝑦 (𝑡𝑡) then 𝑥𝑥 𝑡𝑡 − 𝑇𝑇 → 𝑦𝑦 𝑡𝑡 − 𝑇𝑇
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Basic system classification
Time Variant Control Systems
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■ Most physical systems are time-varying due to aging, but within a certain time 
interval they can be considered time-invariant.

■ Examples of time-variant systems:
■ missiles with varying fuel levels
■ aircraft flying through a wide range of altitudes, where the lift may change with altitude
■ robotic arm with changing payload, where the dynamics change as the robot picks up or 

drops objects

■ Is the system time-invariant or time-variant?
■ y 𝑡𝑡 = 2 � 𝑥𝑥 𝑡𝑡 + 𝑥𝑥(𝑡𝑡 − 1)
■ y 𝑡𝑡 = 𝑡𝑡 � 𝑥𝑥 𝑡𝑡 + 𝑥𝑥 𝑡𝑡 − 1
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Basic system classification
Causal Control Systems
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■ Principle of Causality
■ It's a fundamental concept in science.
■ Every event has a cause and that causes precede their effects.

■ A system is causal if its output at any time 𝑡𝑡 depends only on 
the present and past values of the input – not the future.

■ All physical system must be causal.
■ Example of noncausal system: y 𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + 𝑥𝑥(𝑡𝑡 + 1)
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Basic system classification
Deterministic Control Systems
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■ A deterministic control system is one in which the output is 
fully determined by the input and system dynamics – there’s 
no randomness involved.

■ Fully described by models – can use differential equations or 
transfer functions to model behavior exactly.

■ No probabilistic behavior or random noise in system 
equations.
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Basic system classification
Stochastic Control Systems
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■ Stochastic control systems involve random or uncertain 
elements, such as noise or unpredictable disturbances.

■ Stochastic control methods use probabilistic models to 
describe the system's behavior and optimize the control input 
to achieve the desired outcome on average.

■ Mathematical models use:
■ random variables, variance, standard deviation, probability density 

functions, stochastic differential equations
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Basic system classification
Continuous-Time Control Systems
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■ Continuous-Time Systems, often referred to as analog systems, 
operate with input and output signals that are continuous functions of 
time.

■ Time is treated as a continuous variable and signals are defined at every 
instant of time.

■ We use differential equations to describe and design such systems.
■ Many physical systems naturally exhibit continuous behavior. Their state 

(e.g., temperature, position, pressure) changes smoothly over time in 
response to inputs.
■ e.g. analog electrical circuits, motors, room heating and cooling, robotic arm
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Basic system classification
Discrete-Time Control Systems
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■ A discrete-time control system is a control system where signals are 
processed, measured, and updated at specific time intervals, not 
continuously.

■ Time progresses in steps and the system works with sequences of data 
rather than smooth curves.

■ Difference equations are used to describe and design such systems.

■ Examples:
■ digital thermostat, switching power supplies, digital motor drives, digital 

communication systems, robot controlled by microcontroller
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Basic system classification
Discrete-Time Control Systems

54

■ A control system can be partly discrete and partly continuous, and it is 
then called a hybrid system or sampled-data system, but it is still 
discrete-time system.

■ They require Analog-to-Digital (A/D) and Digital-to-Analog (D/A) 
converters to transform continuous-time signals into discrete-time signals 
and back.

■ Control systems designed in the continuous domain are often 
discretized (e.g., using zero-order hold) to approximate the continuous 
plant for digital simulation or design – then the system is still discrete-
time control system.
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■ Basic concepts in control theory
■ Basic system classification
■ Basic system properties

■ Static Characteristics
■ Dynamic Characteristics

■ System Identification
■ Basic types of controllers
■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors
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Control Systems Engineering 7th Ed., p. 7
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Basic system properties
Static and Dynamic Characteristics
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■ Static characteristics describe a system’s behavior under 
steady-state conditions – when the input and output are not 
changing over time.

■ Dynamic characteristics describe how the system responds 
to changing inputs over time.
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Basic system properties
Static Characteristics
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■ Static characteristics describe a system’s behavior under 
steady-state conditions

■ Static characteristics define the relationship between the 
steady-state output 𝑦𝑦 and the input 𝑥𝑥 with algebraic equation 
expressed as 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 .

■ Static characteristic can be:
■ linear 𝑦𝑦 = 𝑎𝑎 � 𝑥𝑥 + 𝑏𝑏 (straight line)
■ nonlinear 𝑦𝑦 = 𝑎𝑎 � 𝑥𝑥2 + 𝑏𝑏 � 𝑥𝑥 + 𝑐𝑐, 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 , etc. (arbitrary curve)
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■ Most of the physical systems have nonlinear static 
characteristics.

■ Nonlinear equations are difficult to solve, analytical solution is 
often impossible, must use numerical methods.

■ Nonlinear equations are commonly approximated by linear 
equations – this is known as linearization around the 
operating point.
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Basic system properties
Static Characteristics
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■ Linearization of nonlinear static 
characteristic:
■ using the first order Taylor series expansion

around the operating point 𝑥𝑥0
■ we assume small variations around this

point

𝑇𝑇1 𝑥𝑥 = �
𝑘𝑘=0

1
𝑓𝑓 𝑘𝑘 (𝑎𝑎)
𝑘𝑘! (𝑥𝑥 − 𝑎𝑎)𝑘𝑘= 𝑓𝑓 𝑎𝑎 + 𝑓𝑓′ 𝑎𝑎 𝑥𝑥 − 𝑎𝑎
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■ Common Nonlinearities in Static Characteristics:
■ Dead zone – No output for small inputs
■ Saturation – Output stops increasing
■ Hysteresis – Output depends on input history
■ Backlash – Slack in mechanical response

Hysteresis curves of a piezo actuatorBacklash in gears Piezo actuator

https://www.pi-usa.us/en/products/piezo-flexure-nanopositioners/piezo-motion-control-tutorial/tutorial-4-20
https://www.newport.com/f/agilis-piezo-motor-linear-stages
https://www.linearmotiontips.com/whats-the-difference-between-backlash-and-hysteresis-in-linear-systems/
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■ Basic concepts in control theory
■ Basic system classification
■ Basic system properties

■ Static Characteristics
■ Dynamic Characteristics

■ System Identification
■ Basic types of controllers
■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors
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■ Dynamic characteristics describe how the system responds to changing inputs over 
time.

■ For continuous-time systems, dynamic characteristics are expressed using linear 
Ordinary Differential Equations (ODEs) with constant coefficients:

𝑎𝑎𝑛𝑛𝑦𝑦(𝑛𝑛) + 𝑎𝑎𝑛𝑛−1𝑦𝑦(𝑛𝑛−1) + ⋯+ 𝑎𝑎1𝑦𝑦′ + 𝑎𝑎0𝑦𝑦 =

𝑏𝑏𝑚𝑚𝑢𝑢(𝑚𝑚) + 𝑏𝑏𝑚𝑚−1𝑢𝑢(𝑚𝑚−1) + ⋯+ 𝑏𝑏1𝑢𝑢′ + 𝑏𝑏0𝑢𝑢

■ where 𝑦𝑦(𝑡𝑡) is the output, 𝑢𝑢 𝑡𝑡 is the input, 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑚𝑚 are real constants
■ Systems modeled by these equations are known as linear time-invariant (LTI) 

systems.
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■ For causal physical system 𝒎𝒎 ≤ 𝒏𝒏 (input’s derivatives cannot 
be higher than the output’s derivatives).

𝑎𝑎𝑛𝑛𝑦𝑦(𝑛𝑛) + 𝑎𝑎𝑛𝑛−1𝑦𝑦(𝑛𝑛−1) + ⋯+ 𝑎𝑎1𝑦𝑦′ + 𝑎𝑎0𝑦𝑦
= 𝑏𝑏𝑚𝑚𝑢𝑢(𝑚𝑚) + 𝑏𝑏𝑚𝑚−1𝑢𝑢(𝑚𝑚−1) + ⋯+ 𝑏𝑏1𝑢𝑢′ + 𝑏𝑏0𝑢𝑢

■ To find unique solution for ODEs you need to specify initial 
conditions:
■ we need information about 𝑦𝑦(𝑡𝑡) and its 𝑛𝑛 − 1 derivatives at the initial 

time, e.g. at 𝑡𝑡 = 0:
𝑦𝑦 0 ,𝑦𝑦 1 0 ,𝑦𝑦 2 0 , … ,𝑦𝑦 𝑛𝑛−1 0
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■ Solution of a ODE has two components: particular solution 
𝑦𝑦𝑝𝑝(𝑡𝑡) and homogeneous solution 𝑦𝑦ℎ 𝑡𝑡

𝑦𝑦 𝑡𝑡 = 𝑦𝑦𝑝𝑝 𝑡𝑡 + 𝑦𝑦ℎ(𝑡𝑡)
■ Homogeneous solution (natural response of the system) is 

the solution with the input set to zero, that is 𝑢𝑢 𝑡𝑡 = 0.
𝑎𝑎𝑛𝑛𝑦𝑦(𝑛𝑛) + 𝑎𝑎𝑛𝑛−1𝑦𝑦(𝑛𝑛−1) + ⋯+ 𝑎𝑎1𝑦𝑦′ + 𝑎𝑎0𝑦𝑦 = 0

■ Particular solution (forced response of the system) is the 
solution of the same form as the input.
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■ Dynamic characteristics described by the ODEs are used for the 
description, analysis, and design of control systems.

■ The process of building mathematical models from observed input-
output data of a dynamic system is called system identification.

■ We are interested in how the output quantity depends on the input 
quantity.

■ System identification can be approach in various ways:
■ Analytically (Physical modeling)
■ Experimentally (Experimental modeling)
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■ Why Control Systems?
■ Found in everyday technology: appliances, vehicles, robotics, biomedical devices, aerospace.
■ Goal: Ensure system outputs follow desired values and behaviors despite disturbances.

■ Key Concepts
■ System (Plant): Collection of components to be controlled (e.g., car engine, heating system).
■ Dynamical Systems: Behavior changes with time; total response = natural + forced.
■ Control Theory: Uses feedback to guide systems toward stability and desired outcomes.
■ Types of Control Approaches:

■ Classical (frequency-domain, transfer functions, SISO)
■ Modern (state-space, MIMO, nonlinear)
■ Intelligent (AI, adaptive, fuzzy, neural networks)
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■ Open-loop Systems (no feedback)
■ Simple, low cost, fast but cannot handle disturbances.
■ Example: old washing machine.

■ Closed-loop Systems (feedback)
■ Uses sensors + feedback to minimize error.
■ High accuracy, disturbance rejection, stability.
■ Example: thermostat, cruise control, servo motor.

■ System Classifications
■ Linear vs. Nonlinear
■ Time-invariant vs. Time-variant
■ Causal vs. Non-causal
■ Deterministic vs. Stochastic
■ Continuous-time vs. Discrete-time

■ System Properties
■ Static: Steady-state input-output relation (linear/nonlinear, linearization, nonlinearities like hysteresis/backlash).
■ Dynamic: Time-dependent behavior, described by ODEs (natural + forced response).
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■ Voltage, current, and charge relationships for resistors, capacitors, and inductors

https://eng.sut.ac.th/me/2014/document/AutomaticControl/ACSystem-2.pdf
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■ Voltage, current, and charge relationships for resistors, capacitors, and inductors
■ The relationship between current and voltage in a capacitor is derived from the fundamental definition of 

capacitance 𝑞𝑞(𝑡𝑡) = 𝐶𝐶𝐶𝐶(𝑡𝑡) and the definition of electric current 𝑖𝑖 𝑡𝑡 = 𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑.
■ The resistor current-voltage relationship is Ohm's Law, derived from experimental observations, which states 

that the voltage across a resistor is directly proportional to the current flowing through it, with the resistance 𝑅𝑅
being the constant of proportionality, expressed as 𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝑡𝑡 .

■ The fundamental relationship for an inductor 𝑣𝑣 𝑡𝑡 = 𝐿𝐿 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

is derived from Faraday's Law of Induction, which 
states that the induced voltage in any closed circuit is equal to the negative of the time rate of change of the 
magnetic flux through the circuit 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 = −𝑑𝑑Φ/𝑑𝑑𝑑𝑑.

■ The negative sign indicates that the induced voltage opposes the change in flux (Lenz's Law).
■ In circuit convention, we define terminal voltage across the inductor such that this minus cancels 

𝑣𝑣 𝑡𝑡 = −𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 .
■ For an inductor, the magnetic flux Φ it produces is directly proportional to the current 𝑖𝑖 𝑡𝑡 flowing through it

Φ = 𝐿𝐿𝐿𝐿 𝑡𝑡 , here, 𝐿𝐿 is the inductance, a constant value dependent on the inductor's physical properties.
■ Combining the Laws we get the fundamental relationship for an inductor as 𝑣𝑣 𝑡𝑡 = −𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝐿𝐿 𝑑𝑑𝑑𝑑 𝑡𝑡

𝑑𝑑𝑑𝑑
.
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■ Derivation of the differential equation of an ideal RC circuit
■ Applying Kirchhoff’s Voltage Law 𝑢𝑢𝑅𝑅 𝑡𝑡 + 𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑢𝑢 𝑡𝑡

𝑅𝑅𝑅𝑅 𝑡𝑡 +
1
𝐶𝐶
�
0

𝑡𝑡
𝑖𝑖 𝜏𝜏 𝑑𝑑𝑑𝑑 = 𝑢𝑢 𝑡𝑡

■ We want capacitor voltage 𝑢𝑢𝐶𝐶 𝑡𝑡 to be the output quantity

𝑢𝑢𝐶𝐶(𝑡𝑡) =
1
𝐶𝐶
�
0

𝑡𝑡
𝑖𝑖 𝜏𝜏 𝑑𝑑𝑑𝑑 → 𝑖𝑖 𝑡𝑡 = 𝐶𝐶

𝑑𝑑𝑢𝑢𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑅𝑅𝑅𝑅
𝑑𝑑𝑢𝑢𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝑢𝑢𝐶𝐶(𝑡𝑡) = 𝑢𝑢 𝑡𝑡
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■ Kirchhoff’s Voltage Law (KVL) – states that the algebraic sum of all the voltage 
differences (voltage drops) around any closed loop in a circuit is zero.

■ This law is a fundamental principle in circuit analysis, based on the conservation of 
energy.

■ A closed loop is a path in a circuit that starts and ends at the same point, without 
leaving the circuit.

■ In a closed-loop electrical circuit, conventional current flows from the positive terminal 
to the negative terminal of the power source, forming a complete path for the flow of 
electric charge.

■ When traversing a loop, a voltage rise (e.g., from a voltage source) is typically 
considered positive, while a voltage drop (e.g., across a resistor or capacitor) is 
considered negative.

■ So, applying Kirchhoff’s Voltage Law we get 𝑢𝑢 𝑡𝑡 − 𝑢𝑢𝑅𝑅 𝑡𝑡 − 𝑢𝑢𝐶𝐶 𝑡𝑡 = 0, rearranging we 
get 𝑢𝑢𝑅𝑅 𝑡𝑡 + 𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑢𝑢 𝑡𝑡
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■ Derivation of the differential equation of an ideal RC circuit, where 
𝑢𝑢𝑅𝑅 𝑡𝑡 is the output quantity.

𝑅𝑅𝑅𝑅 𝑡𝑡 +
1
𝐶𝐶
�
0

𝑡𝑡
𝑖𝑖 𝜏𝜏 𝑑𝑑𝑑𝑑 = 𝑢𝑢 𝑡𝑡

■ Resistor voltage 𝑢𝑢𝑅𝑅 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝑡𝑡 → 𝑖𝑖 𝑡𝑡 = 𝑢𝑢𝑅𝑅 𝑡𝑡
𝑅𝑅

𝑢𝑢𝑅𝑅 𝑡𝑡 +
1
𝐶𝐶
�
0

𝑡𝑡 𝑢𝑢𝑅𝑅 𝜏𝜏
𝑅𝑅

𝑑𝑑𝑑𝑑 = 𝑢𝑢 𝑡𝑡

𝑑𝑑𝑢𝑢𝑅𝑅(𝑡𝑡)
𝑑𝑑𝑑𝑑

+
1
𝑅𝑅𝐶𝐶

𝑢𝑢𝑅𝑅 𝑡𝑡 =
𝑑𝑑𝑢𝑢 𝑡𝑡
𝑑𝑑𝑑𝑑



12RSEN Control Systems and Sensors

Basic system properties
Dynamic Characteristics

75

■ Ordinary Differential Equations (ODEs)
■ (Laplace) Transfer Function

■ is the ratio of the Laplace transform of a linear, time-invariant (LTI) system's output to the Laplace 
transform of its input, assuming zero initial conditions

■ Impulse Response
■ is the system's output when its input is a unit impulse function (Dirac delta function), assuming zero initial 

conditions

■ Step Response
■ is the system's output when subjected to a unit step input (Heaviside function)

■ Frequency Response / Fourier Transfer Function / Frequency Transfer Function
■ is the ratio of the Fourier Transform of the output signal to the Fourier Transform of the input signal, 

assuming zero initial conditions
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■ Fourier Transform is a linear integral transform with kernel 𝑒𝑒−𝑗𝑗ω𝑡𝑡

■ Forward Fourier Transform:

ℱ 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 𝑗𝑗ω = �
−∞

∞
𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑗𝑗ω𝑡𝑡𝑑𝑑𝑑𝑑

■ Inverse Fourier Transform:

ℱ−1 𝐹𝐹 𝑗𝑗ω = 𝑓𝑓(𝑡𝑡) =
1

2𝜋𝜋
�
−∞

∞
𝐹𝐹 𝑗𝑗ω 𝑒𝑒𝑗𝑗ω𝑡𝑡𝑑𝑑𝑑

■ where 𝑓𝑓(𝑡𝑡) is time domain signal, 𝐹𝐹 𝑗𝑗ω is spectrum (complex-valued 
function of frequency), 𝑒𝑒−𝑗𝑗ω𝑡𝑡 is the kernel of the transform, ω is angular 
frequency in radians (ω = 2𝜋𝜋𝜋𝜋, where 𝑓𝑓 is the frequency in Hz)
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■ Converts a time-domain signal into a frequency-domain 
representation.

■ Useful for analyzing signals and systems in terms of sinusoids.

■ Function 𝑓𝑓(𝑡𝑡) must satisfy some conditions in order to have a 
Fourier transform (Dirichlet’s conditions):
■ Absolutely integrable condition ∫−∞

∞ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 < ∞
■ Piecewise continuous condition – it must have at most a finite 

number of maxima, minima, and discontinuities in any finite interval.
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■ Absolutely integrable condition ∫−∞
∞ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 < ∞

■ Functions that decay to zero fast enough (like exponentials, 
Gaussians, pulses) are absolutely integrable.

𝑓𝑓 𝑡𝑡 = 𝑒𝑒− 𝑡𝑡 𝑓𝑓 𝑡𝑡 = 𝑒𝑒−𝑡𝑡2 𝑓𝑓 𝑡𝑡 = �1 𝑡𝑡 ≤ 1
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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■ Absolutely integrable condition ∫−∞
∞ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 < ∞

■ Functions that stay non-decaying (constants, sinusoids, polynomials) 
are not absolutely integrable.

𝑓𝑓 𝑡𝑡 = �0 𝑡𝑡 < 0
1 𝑡𝑡 ≥ 0 𝑓𝑓 𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) 𝑓𝑓 𝑡𝑡 = 𝑡𝑡2
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■ Absolutely integrable condition ∫−∞
∞ 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑑𝑑 < ∞

■ We can still use classic integral definition of the Fourier transform applied to some of 
not absolutely integrable functions by using windowing.

■ Multiplying 𝑓𝑓(𝑡𝑡) by a special window function that is non-zero for a finite period and 
zero everywhere else, will create a new, non-periodic signal that is now absolutely 
integrable.

■ Window functions:
■ Hanning 𝑤𝑤 𝑡𝑡 = 0.5 − 0.5 � cos 2𝜋𝜋 𝑡𝑡

𝑇𝑇
, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇

■ Hamming 𝑤𝑤 𝑡𝑡 = 0.54− 0.46 � cos 2𝜋𝜋 𝑡𝑡
𝑇𝑇

, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇

■ Blackman 𝑤𝑤 𝑡𝑡 = 0.42 − 0.5 � cos 2𝜋𝜋 𝑡𝑡
𝑇𝑇−1

+
0.08 � cos 4𝜋𝜋 𝑡𝑡

𝑇𝑇−1
, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇
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■ Classic integral definition of the Fourier transform:

�
−∞

∞
𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑗𝑗ω𝑡𝑡𝑑𝑑𝑑𝑑

■ We introduce a dampening factor (a decaying exponential 𝑒𝑒−𝜎𝜎𝑡𝑡) and change 
lower limit of integral to 0 (assuming casual system where response begins at 
𝑡𝑡 = 0 after an input is applied)

�
0

∞
𝑓𝑓(𝑡𝑡)𝑒𝑒−𝜎𝜎𝑡𝑡𝑒𝑒−𝑗𝑗ω𝑡𝑡𝑑𝑑𝑑𝑑

■ We can group the real dampening factor 𝜎𝜎 and the imaginary frequency term 𝑗𝑗𝑗𝑗
into a single complex variable 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗

�
0

∞
𝑓𝑓(𝑡𝑡)𝑒𝑒−(𝜎𝜎+𝑗𝑗ω)𝑡𝑡𝑑𝑑𝑑𝑑 →�

0

∞
𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑
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■ The standard definition of the Laplace Transform:

ℒ 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 𝑠𝑠 = �
0

∞
𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑

■ Inverse Laplace Transform:

ℒ−1 𝐹𝐹(𝑠𝑠) = 𝑓𝑓 𝑡𝑡 =
1

2𝜋𝜋𝜋𝜋
�
𝜎𝜎−𝑗𝑗∞

𝜎𝜎+𝑗𝑗∞
𝐹𝐹(𝑠𝑠)𝑒𝑒𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑

■ where 𝑓𝑓(𝑡𝑡) is time domain signal, 𝐹𝐹 𝑠𝑠 is complex-valued function 
of complex frequency, 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗 is a complex number, often called 
complex frequency, ω is angular frequency, 𝜎𝜎 is a real number
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■ Laplace frequency domain is just a complex plane (s-domain, 
s-plane)

𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗
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■ The rectangular pulse in s-domain

https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch32.pdf
https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch32.pdf
https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch32.pdf
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■ For the integral to converge 𝑓𝑓(𝑡𝑡) must satisfy the following 
conditions:
■ Exponential order condition – there must exist constants 𝑀𝑀 > 0,   
𝑎𝑎 ∈ ℝ such that

𝑓𝑓 𝑡𝑡 ≤ 𝑀𝑀𝑒𝑒𝑎𝑎𝑎𝑎, for all 𝑡𝑡 ≥ 0
■ Piecewise continuity on every finite interval – 𝑓𝑓(𝑡𝑡) must not have 

infinitely many discontinuities in any finite interval.
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■ Properties and Theorems of the Laplace Transform
■ Linearity – if 𝐹𝐹1 𝑠𝑠 = ℒ 𝑓𝑓1 𝑡𝑡 , 𝐹𝐹2 𝑠𝑠 = ℒ 𝑓𝑓2 𝑡𝑡 , 𝑐𝑐1 and 𝑐𝑐2 are 

constants, then
ℒ 𝑐𝑐1𝑓𝑓1 𝑡𝑡 + 𝑐𝑐2𝑓𝑓2 𝑡𝑡 = 𝑐𝑐1𝐹𝐹1 𝑠𝑠 + 𝑐𝑐2𝐹𝐹2 𝑠𝑠

■ Laplace transform of the derivative of a function (Differentiation 
theorem)

ℒ
𝑑𝑑𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑠𝑠𝐹𝐹 𝑠𝑠 − 𝑓𝑓(0)

ℒ
𝑑𝑑2𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑡𝑡2

= 𝑠𝑠2𝐹𝐹 𝑠𝑠 − 𝑠𝑠𝑓𝑓 0 − 𝑓𝑓 1 (0)
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■ Properties and Theorems of the Laplace Transform
■ The Laplace Transform of the Integral of a Function (Integration 

theorem)

ℒ �
0

𝑡𝑡
𝑓𝑓 𝜏𝜏 𝑑𝑑𝑑𝑑 =

1
𝑠𝑠
𝐹𝐹(𝑠𝑠)

■ Initial Value Theorem
lim
𝑡𝑡→0

𝑓𝑓(𝑡𝑡) = lim
𝑠𝑠→∞

𝑠𝑠𝑠𝑠(𝑠𝑠)

■ Final Value Theorem
lim
𝑡𝑡→∞

𝑓𝑓(𝑡𝑡) = lim
𝑠𝑠→0

𝑠𝑠𝑠𝑠(𝑠𝑠)
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■ Table of Laplace Transforms

https://tutorial.math.lamar.edu/classes/de/laplace_table.aspx
https://tutorial.math.lamar.edu/classes/de/laplace_table.aspx
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■ Laplace Transform Example
■ Differential equation of an RC circuit

𝑅𝑅𝑅𝑅
𝑑𝑑𝑢𝑢𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑢𝑢 𝑡𝑡
■ Apply Laplace transform, using differentiation theorem (𝑢𝑢𝐶𝐶 0 = 0)

𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈𝐶𝐶 𝑠𝑠 + 𝑈𝑈𝐶𝐶 𝑠𝑠 = 𝑈𝑈 𝑠𝑠
(𝑅𝑅𝑅𝑅𝑅𝑅 + 1)𝑈𝑈𝐶𝐶 𝑠𝑠 = 𝑈𝑈 𝑠𝑠

𝑈𝑈𝐶𝐶 𝑠𝑠 =
1

𝑅𝑅𝑅𝑅𝑅𝑅 + 1
𝑈𝑈 𝑠𝑠
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■ Laplace Transform Example
■ Apply a step input 𝑢𝑢 𝑡𝑡 = 𝑈𝑈0ℎ(𝑡𝑡), where 𝑈𝑈0 is a step voltage, ℎ(𝑡𝑡) is a 

Heaviside function and assuming ℒ ℎ(𝑡𝑡) = 1/𝑠𝑠

𝑈𝑈𝐶𝐶 𝑠𝑠 =
1

𝑅𝑅𝑅𝑅𝑅𝑅 + 1𝑈𝑈 𝑠𝑠 =
𝑈𝑈0

𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅 + 1)
■ Do a partial fraction decomposition

𝑈𝑈𝐶𝐶 𝑠𝑠 =
𝑈𝑈0

𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅 + 1) =
𝐴𝐴
𝑠𝑠 +

𝐵𝐵
𝑅𝑅𝑅𝑅𝑅𝑅 + 1 =

𝑈𝑈0
𝑠𝑠 +

−𝑅𝑅𝑅𝑅𝑈𝑈0
𝑅𝑅𝑅𝑅𝑅𝑅 + 1 = 𝑈𝑈0

1
𝑠𝑠 − 𝑈𝑈0

1

𝑠𝑠 − (− 1
𝑅𝑅𝑅𝑅)

■ Apply inverse Laplace transform assuming ℒ 𝑒𝑒𝑎𝑎𝑎𝑎 = 1
𝑠𝑠−𝑎𝑎

and ℒ ℎ(𝑡𝑡) = 1/𝑠𝑠

𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑈𝑈0 − 𝑈𝑈0𝑒𝑒
− 1
𝑅𝑅𝑅𝑅𝑡𝑡



12RSEN Control Systems and Sensors

Basic system properties
Dynamic Characteristics – Laplace Transform

91

■ Laplace Transform Example
■ Step response of RC circuit with 𝑈𝑈0 = 5 𝑉𝑉, 𝑅𝑅 = 1 𝑘𝑘Ω, 𝐶𝐶 = 1 𝑚𝑚𝑚𝑚
■ What will be the value of the response at time 𝑡𝑡 = 0 𝑠𝑠 ? Use the Initial 

Value Theorem

lim
𝑡𝑡→0

𝑓𝑓(𝑡𝑡) = lim
𝑠𝑠→∞

𝑠𝑠𝑠𝑠(𝑠𝑠) = lim
𝑠𝑠→∞

𝑠𝑠
𝑈𝑈0

𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅 + 1)
= 0

■ What will be the steady state value of the response (at time 𝑡𝑡 → ∞) ? 
Use the Final Value Theorem 

lim
𝑡𝑡→∞

𝑓𝑓(𝑡𝑡) = lim
𝑠𝑠→0

𝑠𝑠𝑠𝑠(𝑠𝑠) = lim
𝑠𝑠→0

𝑠𝑠
𝑈𝑈0

𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅 + 1)
= 𝑈𝑈0
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■ Laplace Transform Example
■ Step response of RC circuit with 𝑈𝑈0 = 5 𝑉𝑉, 𝑅𝑅 = 1 𝑘𝑘Ω, 𝐶𝐶 = 1 𝑚𝑚𝑚𝑚

𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑈𝑈0 − 𝑈𝑈0𝑒𝑒
− 1
𝑅𝑅𝑅𝑅𝑡𝑡

𝑢𝑢𝐶𝐶 𝑡𝑡 = 5 − 5𝑒𝑒−𝑡𝑡
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■ Laplace Transform MATLAB Example
■ Inverse Laplace transform of 𝑈𝑈𝐶𝐶 𝑠𝑠 = 𝑈𝑈0

𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅+1)
clear all; % clears the workspace
syms s R C U_0; % definition of symbolic variables
U_C = U_0/s/(R*C*s+1) % definition of the Laplace transform of RC circuit ODE
h = ilaplace(U_C) % inverse Laplace transform
pretty(h) % display prettier result 

■ Display the step response of an RC circuit with 𝑈𝑈0 = 5 𝑉𝑉, 𝑅𝑅 = 1 𝑘𝑘Ω, 
𝐶𝐶 = 1 𝑚𝑚𝑚𝑚
vars = [R C U_0]; % definition of symbolic variables for substitution
values = [1000 0.001 5]; % numeric values for symbolic variables
h = subs(h, vars,values) % substitute symbolic variables by the numeric values
fplot(h,[0,5]) % plot the response for t = 0..5s
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■ Basic concepts in control theory

■ Basic system classification

■ Basic system properties
■ Static Characteristics
■ Dynamic Characteristics

■ Ordinary Differential Equations (ODEs)
■ Transfer Function
■ Step Response
■ Impulse Response
■ Frequency Response

■ System Identification

■ Basic types of controllers

■ Control quality evaluation 

■ Control systems stability

■ Controller design methods

■ Digital control

■ Sensors
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■ Nth order, linear, ordinary differential equation:
𝑎𝑎𝑛𝑛𝑦𝑦(𝑛𝑛) + 𝑎𝑎𝑛𝑛−1𝑦𝑦(𝑛𝑛−1) + ⋯+ 𝑎𝑎1𝑦𝑦′ + 𝑎𝑎0𝑦𝑦 =

𝑏𝑏𝑚𝑚𝑢𝑢(𝑚𝑚) + 𝑏𝑏𝑚𝑚−1𝑢𝑢(𝑚𝑚−1) + ⋯+ 𝑏𝑏1𝑢𝑢′ + 𝑏𝑏0𝑢𝑢

■ where 𝑦𝑦(𝑡𝑡) is the output, 𝑢𝑢 𝑡𝑡 is the input, 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑚𝑚 are real constants

■ Taking the Laplace transform of both sides, assuming zero initial 
conditions:

(𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0) � 𝑌𝑌 𝑠𝑠 =
(𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏1𝑠𝑠 + 𝑏𝑏0) � 𝑈𝑈(𝑠𝑠)
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■ (Laplace) Transfer Function is the ratio of the Laplace 
transform of a linear, time-invariant (LTI) system's output to the 
Laplace transform of its input, assuming zero initial conditions

𝐺𝐺 𝑠𝑠 =
𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

=
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏1𝑠𝑠 + 𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0

■ It is often represented as a block diagram
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■ Transfer Function Example – RC Circuit
■ The Laplace transform of an RC Circuit ODE is

𝑈𝑈𝐶𝐶 𝑠𝑠 =
1

𝑅𝑅𝑅𝑅𝑅𝑅 + 1
𝑈𝑈 𝑠𝑠

■ The transfer function is

𝐺𝐺(𝑠𝑠) =
𝑈𝑈𝐶𝐶 𝑠𝑠
𝑈𝑈 𝑠𝑠

=
1

𝑅𝑅𝑅𝑅𝑅𝑅 + 1
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■ Analytical System Identification
■ Derived governing equations for electrical elements:

■ Resistor: 𝑣𝑣 𝑡𝑡 = 𝑅𝑅𝑅𝑅(𝑡𝑡) (Ohm’s Law)
■ Capacitor: 𝑖𝑖 𝑡𝑡 = 𝐶𝐶 ⁄𝑑𝑑𝑑𝑑(𝑡𝑡) 𝑑𝑑𝑑𝑑
■ Inductor: 𝑣𝑣 𝑡𝑡 = 𝐿𝐿 ⁄𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

■ Kirchhoff’s Voltage Law: Sum of voltages in a closed loop = 0.

■ RC-Circuit Modeling
■ 𝑅𝑅𝑅𝑅 𝑑𝑑𝑢𝑢𝐶𝐶(𝑡𝑡)

𝑑𝑑𝑑𝑑
+ 𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑢𝑢 𝑡𝑡 → 1st order ODE.

■ Step-input solution: 𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑈𝑈0 − 𝑈𝑈0𝑒𝑒
− 𝑡𝑡
𝑅𝑅𝑅𝑅

■ Illustrated initial (0 𝑉𝑉) and final (𝑈𝑈0) values via Initial/Final Value Theorems.

■ MATLAB Example: Used ilaplace() and fplot() to derive and visualize the step response.
■ Key Dynamic Responses

■ Impulse response: Output for unit impulse input.
■ Step response: Output for unit step input.
■ Frequency response: Ratio of output/input in frequency domain.
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■ Fourier Transform
■ Converts time signals ↔ frequency domain.
■ Forward: ℱ 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 𝑗𝑗𝑗 = ∫−∞

∞ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑
■ Requires absolutely integrable, piecewise continuous signals.
■ Windowing (Hanning, Hamming, Blackman) makes non-decaying signals integrable.

■ Laplace Transform
■ Extends Fourier by adding decay term 𝑒𝑒−𝜎𝜎𝑡𝑡, 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗
■ Forward: ℒ 𝑓𝑓(𝑡𝑡) = 𝐹𝐹 𝑠𝑠 = ∫0

∞ 𝑓𝑓(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑
■ Properties: Linearity, Differentiation/Integration theorems, Initial & Final Value theorems.

■ Transfer Function: 𝐺𝐺 𝑠𝑠 = 𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

Core representation of linear time-invariant (LTI) systems in the s-domain.
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■ Block algebra is a set of reduction rules used to reduce the 
complex diagram to a single block representing the overall 
system’s transfer function.

■ Fundamental reductions rules:
■ Blocks in series
■ Blocks in parallel
■ Feedback loops

Modern Control Engineering 2002, p. 103,104
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■ Blocks in series (in cascade)

■ X1(s) = K1(s)∙X0(s)
■ X2(s) = K2(s)∙X1(s)
■ Overall transfer function X2(s)/X0(s) = K1(s)∙K2(s)

K1(s)
X0 X1 K2(s)

X2 K1(s) ∙ K2(s)
X0 X2
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■ Blocks in parallel

■ X1(s) = K1(s)∙X0(s)
■ X2(s) = K2(s) ∙X0(s)
■ X3(s) = X1(s) + X2(s)
■ Overall transfer function X3(s)/X0(s) = K1(s) + K2(s)

K1(s)

K2(s)
X0

X1

X2

+

+
X3 K1(s) + K2(s)

X0 X3
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■ Feedback loops

■ X1(s) = X0(s) – X3(s)
■ X2(s) = K1(s) ∙ X1(s)
■ X3(s) = K2(s) ∙ X2(s)
■ Overall transfer function X2(s)/X0(s) = K1(s)/(1 + K1(s)K2(s))

K1(s)

K2(s)

X0
X1+

-
X2 K1(s)

1+K1(s)K2(s)
X0 X2

X3

K1(s) forward path transfer function 
K2(s) feedback path transfer function
K1(s)K2(s) loop gain
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■ Block Diagram Reduction Example

Control Systems Engineering 7th Ed., p. 243
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■ Block Diagram Reduction Example

Control Systems Engineering 7th Ed., p. 243
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■ Characteristic polynomial – is the denominator of a transfer function

■ Characteristic equation – is formed by setting the characteristic polynomial to zero
■ The roots of the characteristic equation are the system's poles

■ These roots determine the stability of the system
■ They dictate the system’s transient response characteristics
■ The system’s order is equal to the total number of poles

■ Roots of the numerator polynomial are called system’s zeros
■ They influence transient behavior

𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 + ⋯+ 𝑏𝑏1𝑠𝑠 + 𝑏𝑏0
𝒂𝒂𝒏𝒏𝒔𝒔𝒏𝒏 + ⋯+ 𝒂𝒂𝟏𝟏𝒔𝒔 + 𝒂𝒂𝟎𝟎

𝑌𝑌(𝑠𝑠)𝑈𝑈(𝑠𝑠)

𝑏𝑏𝑚𝑚
𝑎𝑎𝑛𝑛

𝑠𝑠 − 𝑧𝑧𝑚𝑚 ⋯ (𝑠𝑠 − 𝑧𝑧1)
𝑠𝑠 − 𝑝𝑝𝑛𝑛 ⋯ (𝑠𝑠 − 𝑝𝑝1)

𝑌𝑌(𝑠𝑠)𝑈𝑈(𝑠𝑠)
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■ If we factor the numerator and denominator polynomials we 
get the following form of the transfer function:

𝐺𝐺 𝑠𝑠 =
𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑏𝑏𝑚𝑚−1𝑠𝑠𝑚𝑚−1 + ⋯+ 𝑏𝑏1𝑠𝑠 + 𝑏𝑏0
𝑎𝑎𝑛𝑛𝑠𝑠𝑛𝑛 + 𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0

=
𝑏𝑏𝑚𝑚
𝑎𝑎𝑛𝑛

𝑠𝑠 − 𝑧𝑧𝑚𝑚 ⋯ (𝑠𝑠 − 𝑧𝑧1)
𝑠𝑠 − 𝑝𝑝𝑛𝑛 ⋯ (𝑠𝑠 − 𝑝𝑝1)

■ where 𝑧𝑧𝑚𝑚 are system’s zeros and 𝑝𝑝𝑛𝑛 are system’s poles
■ Poles and zeros can be real, purely imaginary or complex 

conjugate.
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■ Pole-zero plot / map / diagram

https://gnu-octave.github.io/pkg-control/pzmap.html
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■ Left half-plane is
stable region

■ Right half-plane is
unstable region

■ Imaginary axis is
the boundary

https://blog.mbedded.ninja/electronics/circuit-design/what-are-transfer-functions-poles-and-zeroes/
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■ Real poles cause aperiodic system response

𝐺𝐺(𝑠𝑠) = 1
𝑠𝑠+5

, one pole 𝑝𝑝 = −5
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■ Real poles cause aperiodic system response

𝐺𝐺(𝑠𝑠) =
1

𝑠𝑠 + 5
■ MATLAB Code to generate pole-zero map and step response

clear all; % clears the workspace
s = tf('s'); % definition of symbolic variable
G = 1 / (s + 5); % definition of the transfer function
pzmap(G); % plot pole-zero map
figure; % create new window for the next plot
step(G); % plot the step response
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■ Negative real poles are reciprocals of the time constants of a 
system

𝑇𝑇𝑖𝑖 = −
1
𝑝𝑝𝑖𝑖

■ What is the time constant of an RC circuit with the transfer 
function ?

𝐺𝐺(𝑠𝑠) =
1

𝑅𝑅𝑅𝑅𝑅𝑅 + 1
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■ Complex conjugate poles cause oscillatory response

𝐺𝐺(𝑠𝑠) =
1

𝑠𝑠2 + 2𝑠𝑠 + 25
Complex conjugate poles
𝑝𝑝 = −1 ± 𝑗𝑗𝑗.9
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■ Complex conjugate poles cause oscillatory response

𝐺𝐺(𝑠𝑠) =
1

𝑠𝑠2 + 2𝑠𝑠 + 25
■ MATLAB Code to generate pole-zero map and step response

clear all; % clears the workspace
s = tf('s'); % definition of symbolic variable
G = 1 / (s^2 + 2*s + 25); % definition of the transfer function
pzmap(G); % plot pole-zero map
figure; % create new window for the next plot
step(G); % plot the step response
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■ Ideal series RLC circuit example
■ Applying Kirchhoff’s Voltage Law 𝑢𝑢𝑅𝑅 𝑡𝑡 + 𝑢𝑢𝐿𝐿 𝑡𝑡 + 𝑢𝑢𝐶𝐶 𝑡𝑡 = 𝑢𝑢 𝑡𝑡

𝑅𝑅𝑅𝑅 𝑡𝑡 + 𝐿𝐿
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

+
1
𝐶𝐶
�
0

𝑡𝑡
𝑖𝑖 𝜏𝜏 𝑑𝑑𝑑𝑑 = 𝑢𝑢 𝑡𝑡

■ Capacitor voltage 𝑢𝑢𝐶𝐶 𝑡𝑡 is the output quantity

𝑢𝑢𝐶𝐶(𝑡𝑡) =
1
𝐶𝐶
�
0

𝑡𝑡
𝑖𝑖 𝜏𝜏 𝑑𝑑𝑑𝑑 → 𝑖𝑖 𝑡𝑡 = 𝐶𝐶

𝑑𝑑𝑢𝑢𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑅𝑅𝑅𝑅
𝑑𝑑𝑢𝑢𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝐿𝐿
𝑑𝑑2𝑢𝑢𝐶𝐶(𝑡𝑡)
𝑑𝑑𝑡𝑡2

+ 𝑢𝑢𝐶𝐶(𝑡𝑡) = 𝑢𝑢 𝑡𝑡
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■ Ideal series RLC circuit example

■ Apply Laplace transform, using differentiation theorem with zero 
initial conditions
𝑅𝑅𝑅𝑅𝑅𝑅𝑈𝑈𝐶𝐶 𝑠𝑠 + 𝐿𝐿𝐿𝐿𝑠𝑠2𝑈𝑈𝐶𝐶 𝑠𝑠 + 𝑈𝑈𝐶𝐶 𝑠𝑠 = 𝑈𝑈 𝑠𝑠
(𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐿𝐿𝐿𝐿𝑠𝑠2 + 1)𝑈𝑈𝐶𝐶 𝑠𝑠 = 𝑈𝑈 𝑠𝑠

𝐺𝐺 𝑠𝑠 =
𝑈𝑈𝐶𝐶 𝑠𝑠
𝑈𝑈 𝑠𝑠

=
1

𝐿𝐿𝐿𝐿𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 1



12RSEN Control Systems and Sensors

Basic system properties
Dynamic Characteristics – Poles and zeros

117

■ Ideal series RLC circuit example
■ RLC circuit transfer function

𝐺𝐺 𝑠𝑠 =
1

𝐿𝐿𝐿𝐿𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 1
■ The transfer function of a standard second-order control system

𝐺𝐺 𝑠𝑠 =
𝑘𝑘𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2ζ𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
=

𝑘𝑘𝜔𝜔𝑛𝑛2

(𝑠𝑠 + ζ𝜔𝜔𝑛𝑛 − 𝑗𝑗𝜔𝜔𝑑𝑑)(𝑠𝑠 + ζ𝜔𝜔𝑛𝑛 + 𝑗𝑗𝜔𝜔𝑑𝑑)

where 𝜔𝜔𝑛𝑛 is a natural frequency, ζ is a damping ratio, 𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛 1 − ζ2 is 
damped natural frequency, and 𝑘𝑘 is a system gain
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■ Natural frequency 𝝎𝝎𝒏𝒏 (undamped frequency) – the angular frequency at which 
the system would oscillate if there were no damping

■ Damping ratio/factor/coefficient 𝜻𝜻 – a dimensionless number that determines 
how quickly oscillations in a system's response decay
 undamped system if ζ = 0
 underdamped system if 0 < ζ < 1
 critically damped if ζ = 1
 overdamped system if ζ > 1

■ Damped natural frequency 𝝎𝝎𝒅𝒅 – the angular frequency at which the system 
oscillate in the presence of damping
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■ Second-order response as a function of damping ratio

ζ = 0 0 < ζ < 1 ζ = 1 ζ > 1
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■ Ideal series RLC circuit example

■ Comparing the transfer functions of an RLC circuit and a standard 
second-order control system we get the following parameters:
■ Natural frequency 𝜔𝜔𝑛𝑛 = 1

𝐿𝐿𝐿𝐿

■ Damping ratio ζ = 𝑅𝑅
2

𝐶𝐶
𝐿𝐿

■ System gain 𝑘𝑘 = 1

𝐺𝐺 𝑠𝑠 =
1

𝐿𝐿𝐿𝐿𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 1 =
⁄1 𝐿𝐿𝐿𝐿

𝑠𝑠2 + 𝑅𝑅/𝐿𝐿𝐿𝐿 + 1/𝐿𝐿𝐿𝐿
=

𝑘𝑘𝜔𝜔𝑛𝑛2

𝑠𝑠2 + 2ζ𝜔𝜔𝑛𝑛𝑠𝑠 + 𝜔𝜔𝑛𝑛2
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■ Ideal series RLC circuit example

𝐺𝐺 𝑠𝑠 =
1

𝐿𝐿𝐿𝐿𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 1
=

1
(𝑠𝑠 − 𝑝𝑝1)(𝑠𝑠 − 𝑝𝑝2)

,𝑝𝑝1,2 =
−𝑅𝑅𝑅𝑅 ± (𝑅𝑅𝑅𝑅)2−4𝐿𝐿𝐿𝐿

2𝐿𝐿𝐿𝐿

■ Now substitute specific values for RLC constants
a) R = 100 Ohm, L = 10 H, C = 200 μF
b) R = 500 Ohm, L = 10 H, C = 200 μF
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■ Ideal series RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

𝐺𝐺 𝑠𝑠 =
1

𝐿𝐿𝐿𝐿𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 1
=

1
𝐿𝐿𝐿𝐿

𝑠𝑠2 + 𝑅𝑅
𝐿𝐿 𝑠𝑠 + 1

𝐿𝐿𝐿𝐿
=

500
𝑠𝑠2 + 10𝑠𝑠 + 500

=
500

(𝑠𝑠 + 5 − 𝑗𝑗𝑗𝑗.8)(𝑠𝑠 + 5 + 𝑗𝑗𝑗𝑗.8)

■ Damping ratio is ζ = 𝑅𝑅
2

𝐶𝐶
𝐿𝐿

= 0.2236

■ Natural frequency 𝜔𝜔𝑛𝑛 = 1
𝐿𝐿𝐿𝐿

= 22.36 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

■ Damped natural frequency 𝜔𝜔𝑑𝑑 = 𝜔𝜔𝑛𝑛 1 − ζ2 = 21.8 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠
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■ Ideal series RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

500
(𝑠𝑠 + 5 − 𝑗𝑗𝑗𝑗.8)(𝑠𝑠 + 5 + 𝑗𝑗𝑗𝑗.8)

𝑌𝑌(𝑠𝑠)𝑈𝑈(𝑠𝑠)

https://ocw.mit.edu/courses/2-003-modeling-dynamics-and-control-i-spring-2005/57d44d83366ec969c16208c8fac3982d_notesinstalment2.pdf
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■ Ideal series RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

■ MATLAB Code to generate pole-zero map and step response
clear all; % clears the workspace
s = tf('s'); % definition of symbolic variable
L = 10; C = 200e-6; R = 100;
G = 1/(L*C*s^2 + R*C*s + 1); % definition of the transfer function
pzmap(G); % plot pole-zero map
figure; % create new window for the next plot
step(G); % plot the step response
hold on; % place the next plot in the same figure
syms t; % define symbolic variable t

fplot(exp(-R/2/L*t)+1); % plot exponential decay function
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■ Ideal series RLC circuit (R = 500 Ohm, L = 10 H, C = 200 μF)

𝐺𝐺 𝑠𝑠 =
1

𝐿𝐿𝐿𝐿𝑠𝑠2 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 1
=

1
𝐿𝐿𝐿𝐿

𝑠𝑠2 + 𝑅𝑅
𝐿𝐿 𝑠𝑠 + 1

𝐿𝐿𝐿𝐿
=

500
𝑠𝑠2 + 50𝑠𝑠 + 500

=

500
(𝑠𝑠 + 36.2)(𝑠𝑠 + 13.8)

■ Damping ratio is ζ = 𝑅𝑅
2

𝐶𝐶
𝐿𝐿

= 1.12
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■ Ideal series RLC circuit (R = 500 Ohm, L = 10 H, C = 200 μF)



12RSEN Control Systems and Sensors

Basic system properties
Dynamic Characteristics – Poles and zeros

127

■ Ideal series RLC circuit (R = 500 Ohm, L = 10 H, C = 200 μF)

■ MATLAB Code to generate pole-zero map and step response
clear all; % clears the workspace
s = tf('s'); % definition of symbolic variable
L = 10; C = 200e-6; R = 500;
G = 1/(L*C*s^2 + R*C*s + 1); % definition of the transfer function
pzmap(G); % plot pole-zero map
figure; % create new window for the next plot
step(G); % plot the step response
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■ Basic concepts in control theory

■ Basic system classification

■ Basic system properties
■ Static Characteristics
■ Dynamic Characteristics

■ Ordinary Differential Equations (ODEs)
■ Transfer Function
■ Step Response
■ Impulse Response
■ Frequency Response

■ System Identification

■ Basic types of controllers

■ Control quality evaluation 

■ Control systems stability

■ Controller design methods

■ Digital control

■ Sensors
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■ Step response is the output of a system when subjected to a 
step input, like unit step function (Heaviside function)

𝑢𝑢 𝑡𝑡 = �1 𝑡𝑡 > 0
0 𝑡𝑡 < 0

■ Laplace transform of the step function

ℒ 𝑢𝑢(𝑡𝑡) =
1
𝑠𝑠

https://en.wikipedia.org/wiki/Heaviside_step_function
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■ From the transfer function definition

𝐺𝐺 𝑠𝑠 =
𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

→ 𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 𝑈𝑈 𝑠𝑠

■ Analytical step response function

𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠
1
𝑠𝑠
→ 𝑦𝑦 𝑡𝑡 = ℎ(𝑡𝑡) = ℒ−1 𝐺𝐺 𝑠𝑠

1
𝑠𝑠

𝐺𝐺(𝑠𝑠)
𝑌𝑌(𝑠𝑠)𝑈𝑈 𝑠𝑠 = 1/𝑠𝑠
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■ Step response of an RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

■ Analytical step response function

𝑦𝑦 𝑡𝑡 = ℎ(𝑡𝑡) = ℒ−1 𝐺𝐺 𝑠𝑠
1
𝑠𝑠

= ℒ−1
500

𝑠𝑠2 + 10𝑠𝑠 + 500
1
𝑠𝑠

= 1 − 𝑒𝑒−5𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠 5 19𝑡𝑡 +
19

19
𝑠𝑠𝑠𝑠𝑠𝑠(5 19𝑡𝑡)

500
𝑠𝑠2 + 10𝑠𝑠 + 500

𝑌𝑌(𝑠𝑠)𝑈𝑈 𝑠𝑠 = 1/𝑠𝑠



12RSEN Control Systems and Sensors

Basic system properties
Dynamic Characteristics – Step Response

132

■ Step response of an RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

■ MATLAB Code to calculate the inverse Laplace transform
clear all; % clears the workspace
syms s; % definition of symbolic variable
L = 10; C = 200e-6; R = 100;
G = 1/(L*C*s^2 + R*C*s + 1); % definition of the transfer function
h = ilaplace(G/s); % calculate inverse Laplace transform
pretty(h); % prints symbolic expression in more readable format

500
𝑠𝑠2 + 10𝑠𝑠 + 500

𝑌𝑌(𝑠𝑠)𝑈𝑈 𝑠𝑠 = 1/𝑠𝑠
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■ Basic concepts in control theory

■ Basic system classification

■ Basic system properties
■ Static Characteristics
■ Dynamic Characteristics

■ Ordinary Differential Equations (ODEs)
■ Transfer Function
■ Step Response
■ Impulse Response
■ Frequency Response

■ System Identification

■ Basic types of controllers

■ Control quality evaluation 

■ Control systems stability

■ Controller design methods

■ Digital control

■ Sensors
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■ Impulse response is the output of a system when subjected 
to an impulse input function (Dirac delta function)

𝛿𝛿 𝑡𝑡 = �0 𝑡𝑡 ≠ 0
∞ 𝑡𝑡 = 0 such that ∫−∞

∞ 𝛿𝛿 𝑡𝑡 𝑑𝑑𝑑𝑑 = 1

■ In practical implementations Dirac delta is
approximated with inputs that have small 
duration (small enough compared to the 
system’s dynamics) and finite amplitude.

https://www.probabilitycourse.com/chapter4/4_3_2_delta_function.php
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■ Laplace transform of the impulse input function
ℒ 𝛿𝛿(𝑡𝑡) = 1

■ Relation to Heaviside step function 𝑢𝑢(𝑡𝑡)
𝛿𝛿 𝑡𝑡 = 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑑𝑑
and 𝑢𝑢 𝑡𝑡 = ∫−∞

𝑡𝑡 𝛿𝛿 𝜏𝜏 𝑑𝑑𝜏𝜏
■ Time shifted Dirac delta function

𝛿𝛿 𝑡𝑡 − 𝑡𝑡0 = �0 𝑡𝑡 ≠ 𝑡𝑡0
∞ 𝑡𝑡 = 𝑡𝑡0

such that ∫−∞
∞ 𝛿𝛿 𝑡𝑡 − 𝑡𝑡0 𝑑𝑑𝑑𝑑 = 1

■ Laplace transform of the time-shifted impulse
function

ℒ 𝛿𝛿 𝑡𝑡 − 𝑡𝑡0 = 𝑒𝑒−𝑠𝑠𝑡𝑡0

https://www.probabilitycourse.com/chapter4/4_3_2_delta_function.php
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■ The sifting (sampling) property of the Dirac delta function 
(extracting the function's value at a specific point 𝑡𝑡0)

�
−∞

∞
𝑓𝑓(𝑡𝑡)𝛿𝛿 𝑡𝑡 − 𝑡𝑡0 𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑡𝑡0)

■ Representing a signal as a sum of weighted 
and shifted Dirac deltas is directly related to 
how sampling is modeled in signal processing

𝑓𝑓 𝑡𝑡 = �
−∞

∞
𝑓𝑓(𝜏𝜏)𝛿𝛿 𝜏𝜏 − 𝑡𝑡 𝑑𝑑𝜏𝜏

https://www.youtube.com/watch?v=Y8y965ZAmQE
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■ From the transfer function definition

𝐺𝐺 𝑠𝑠 =
𝑌𝑌(𝑠𝑠)
𝑈𝑈(𝑠𝑠)

→ 𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 𝑈𝑈 𝑠𝑠

■ Analytical impulse response function
𝑌𝑌 𝑠𝑠 = 𝐺𝐺 𝑠𝑠 1 → 𝑦𝑦 𝑡𝑡 = 𝑔𝑔(𝑡𝑡) = ℒ−1 𝐺𝐺 𝑠𝑠

𝐺𝐺(𝑠𝑠)
𝑌𝑌(𝑠𝑠)𝑈𝑈 𝑠𝑠 = 1
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■ Relation to the step response 𝒉𝒉(𝒕𝒕)
■ If you differentiate step response you get impulse response and vice versa, if you 

integrate impulse response you get step response.

𝑔𝑔 𝑡𝑡 =
𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

ℎ 𝑡𝑡 =�
0

𝑡𝑡
𝑔𝑔 𝜏𝜏 𝑑𝑑𝑑𝑑
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■ MATLAB Code to show the relation between step and impulse response
clear all; % clears the workspace
s = tf('s'); % definition of symbolic variable
L = 10; C = 200e-6; R = 500; % parameters of RLC circuit
G = 1/(L*C*s^2 + R*C*s + 1); % definition of the transfer function
[g t] = impulse(G); % calculate impulse response from the transfer function and save values into 

g,t variables
impulse(G); % plot impulse response
figure; % opens new, empty figure
plot(t,cumtrapz(t,g)); % plot the integral of the impulse response into newly opened figure
hold on; % next plot will be shown in the same figure
[h t] = step(G); % calculate step response
plot(t,h,'r'); % plot step response (red) over the integral of the impulse response (blue)
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■ Impulse response of an RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

■ Analytical step response function

𝑦𝑦 𝑡𝑡 = 𝑔𝑔(𝑡𝑡) = ℒ−1 𝐺𝐺 𝑠𝑠 1 = ℒ−1
500

𝑠𝑠2 + 10𝑠𝑠 + 500

=
100 19

19
𝑒𝑒−5𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠(5 19𝑡𝑡)

500
𝑠𝑠2 + 10𝑠𝑠 + 500

𝑌𝑌(𝑠𝑠)𝑈𝑈 𝑠𝑠 = 1

https://www.probabilitycourse.com/chapter4/4_3_2_delta_function.php
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■ Impulse response of an RLC circuit (R = 100 Ohm, L = 10 H, C = 200 μF)

■ MATLAB Code to calculate the inverse Laplace transform
clear all; % clears the workspace
syms s; % definition of symbolic variable
L = 10; C = 200e-6; R = 100;
G = 1/(L*C*s^2 + R*C*s + 1); % definition of the transfer function
g = ilaplace(G); % calculate inverse Laplace transform
pretty(g); % prints symbolic expression in more readable format
fplot(g,[0 1]); % draw plot of an impulse function

500
𝑠𝑠2 + 10𝑠𝑠 + 500

𝑌𝑌(𝑠𝑠)𝑈𝑈 𝑠𝑠 = 1
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■ Convolution
■ Convolution is a very powerful technique that can be used to calculate 

the response of a system to an arbitrary input by using the impulse 
response of a system.

■ Continuous time convolution is an operation on two continuous time 
signals defined by the integral

(𝑓𝑓 ∗ 𝑔𝑔) 𝑡𝑡 = �
−∞

∞
𝑓𝑓 𝜏𝜏 𝑔𝑔 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑

■ Informally this notation 𝑓𝑓 𝑡𝑡 ∗ 𝑔𝑔 𝑡𝑡 also denotes convolution
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■ Convolution
■ Consider an LTI system whose input is time-shifted Dirac delta function then its 

output is time-shifted impulse response.

■ Let 𝑓𝑓(𝑡𝑡) be any input whose value at 𝑡𝑡 = 𝜏𝜏 is 𝑓𝑓(𝜏𝜏), then because of linearity, if we 
scale the input by any factor, the output will be scaled by the same factor.

System
𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝛿𝛿 𝑡𝑡 − 𝜏𝜏

System
𝑓𝑓 𝜏𝜏 𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑓𝑓(𝜏𝜏)𝛿𝛿 𝑡𝑡 − 𝜏𝜏



12RSEN Control Systems and Sensors

Basic system properties
Dynamic Characteristics – Impulse Response

144

■ Convolution
■ Now we integrate both sides over all values of 𝜏𝜏

■ Assuming the Dirac delta is even function 𝛿𝛿 𝑡𝑡 − 𝜏𝜏 = 𝛿𝛿 𝜏𝜏 − 𝑡𝑡 , at the input we have a signal 
𝑓𝑓 𝑡𝑡 represented as a sum of weighted and shifted Dirac deltas and output is the convolution 
integral.

System
�
−∞

∞
𝑓𝑓 𝜏𝜏 𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏�

−∞

∞
𝑓𝑓(𝜏𝜏)𝛿𝛿 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝜏𝜏

System
�
−∞

∞
𝑓𝑓 𝜏𝜏 𝑔𝑔(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏 = (𝑓𝑓 ∗ 𝑔𝑔)(𝑡𝑡)𝑓𝑓 𝑡𝑡 = �

−∞

∞
𝑓𝑓(𝜏𝜏)𝛿𝛿 𝜏𝜏 − 𝑡𝑡 𝑑𝑑𝜏𝜏
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■ Convolution
■ The convolution integral states that the system is entirely characterized by its 

response to a Dirac delta function, i.e. its impulse response 𝑔𝑔 𝑡𝑡

𝑦𝑦 𝑡𝑡 = (𝑓𝑓 ∗ 𝑔𝑔) 𝑡𝑡 = �
−∞

∞
𝑓𝑓 𝜏𝜏 𝑔𝑔 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝜏𝜏

■ The convolution is commutative

(𝑓𝑓 ∗ 𝑔𝑔) 𝑡𝑡 = (𝑔𝑔 ∗ 𝑓𝑓) 𝑡𝑡 = �
−∞

∞
𝑔𝑔 𝜏𝜏 𝑓𝑓(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏

■ Convolution animation https://lpsa.swarthmore.edu/Convolution/CI.html

System
𝑔𝑔 𝑡𝑡

𝑦𝑦(𝑡𝑡)𝑓𝑓 𝑡𝑡

https://lpsa.swarthmore.edu/Convolution/CI.html
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■ Convolution theorem
■ The convolution theorem states that the Laplace transform of the 

convolution of two functions is equal to the product of their individual 
Laplace transforms.

ℒ (𝑓𝑓 ∗ 𝑔𝑔) 𝑡𝑡 = 𝐹𝐹 𝑠𝑠 𝐺𝐺 𝑠𝑠

𝑓𝑓 ∗ 𝑔𝑔 𝑡𝑡 = ℒ−1 𝐹𝐹 𝑠𝑠 𝐺𝐺 𝑠𝑠
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■ Convolution Example – Convolution filters
■ Fundamental building blocks in image processing and computer vision.

https://www.linkedin.com/pulse/image-processing-convolution-filters-calculation-gradients-yadav
https://medium.com/analytics-vidhya/understanding-convolution-operations-in-cnn-1914045816d4
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■ Convolution Example – Convolutional Neural Networks
■ A type of deep learning artificial neural network, primarily used for 

image analysis and pattern recognition by identifying features from 
images.

https://medium.com/analytics-vidhya/convolution-operations-in-cnn-deep-learning-compter-vision-128906ece7d3
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