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System ldentification

m Finding a mathematical model of a real system that describes its
behavior as accurately as possible.
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m System identification has two broad approaches:

m Analytical (first-principles modeling)
m Based on the laws of physics, chemistry, or mechanics of the system.

m Derive equations directly from fundamental principles (e.g., Newton’s laws, Kirchhoff’s laws,
thermodynamics).

m Experimental (data-driven modeling)
m Based on measured input—output data without fully relying on physics.
m Model structure and parameters are estimated from data rather than derived from laws.
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System ldentification

m  System identification involves the following steps:
m obtaining good experimental data
m apply input signals like impulse, step, sinusoidal, pseudo-random signal (PRBS) or white noise
m measure input and output data under the chosen excitation
m selecting a suitable model structure
m  mathematical relationship between input and output variables that contains unknown parameters

m examples: transfer function (with adjustable poles and zeros), state-space equations, nonlinear
parameterized functions

m estimating the model parameters
m first, select the cost function — mathematical expression that measures the “error” between the
measured system output and the model’s predicted output, e.g. mean squared error z Ny —yu)?
N

m then, minimize this cost function through an optimization process by adjusting the model
parameters

m evaluating the model accuracy
m determine if the identified model is good enough for its intended purpose
m test the model on new input—output data not used in training
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System ldentification

m System identification can be categorized depending on when and
how the model is estimated

m Offline Identification (Batch)

m Collect input-output data first, then process it afterward (in one batch) to estimate
model parameters.

m More accurate results since full dataset is used.
m Used in system that don’t change with time and can be run and repeated.

m Online Identification (Adaptive)

Update model parameters continuously as new measurements arrive.
Parameters are refined in real time.

Useful for time-varying systems (whose parameters change over time).

[
[
[
m Can adapt to disturbances, wear, or changes in system behavior.
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System ldentification

m Model parameter estimation process
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e(t) = y(t) — yu(t)

u(t)
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System ldentification

m Models can be classified according to several key characteristics,
depending on how they represent the system’s behavior and how they

are derived:
m Physical vs. Mathematical Models

m Physical — based on physical laws, parameters have physical meaning
m Mathematical — derived from input-output data without explicit physical interpretation

m Static vs. Dynamic Models
m Static — output depends only on current input
m Dynamic — output depends on present and past inputs (and possibly past outputs)

m Stationary vs. Non-Stationary Models
m Stationary — model parameters do not change with time
m Non-Stationary (Time-Varying) — model parameters change over time
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System ldentification

m Classification of models:

m Deterministic vs. Stochastic Models
m Deterministic — no randomness, same input always gives same output
m Stochastic — includes random processes or noise
m Linear vs. Nonlinear Models
m Linear — superposition principle holds
m Nonlinear — output not proportional to input
m Continuous-Time vs. Discrete-Time Models

m Continuous-Time — variables defined for all t € R
m Discrete-Time — variables defined only at sampling instants t = kT
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System ldentification

m Methods of experimental identification

m Experimental (data-driven) identification determines a system’s model
from measured input—output data, rather than from physical laws.

Handles | Updates in
Category Example Methods

Deterministic Methods x No x No Step / Impulse response, Frequency response
Stochastic Methods v Yes x No ARX, ARMAX, BJ
Adaptive Methods v Yes v Yes Recursive Least Squares, Kalman Filter, Least Mean Square
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System ldentification

m Methods of experimental identification

m Deterministic Methods
m These assume no randomness — the relationship between input and output is deterministic
(noise-free or negligible).
m Step response, Impulse response, Frequency response, Bode analysis

m Stochastic Methods

These explicitly model random disturbances and noise in the data.
ARX (AutoRegressive with eXogenous input)

ARMAX (AutoRegressive Moving Average with eXogenous input)
Output Error (OE), Box-Jenkins (BJ)

m Adaptive Methods

m [hese update parameters continuously or recursively as new data arrives.
m Used when the system is time-varying or operating conditions change.
m Recursive Least Squares, Kalman Filter, Least Mean Square...
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