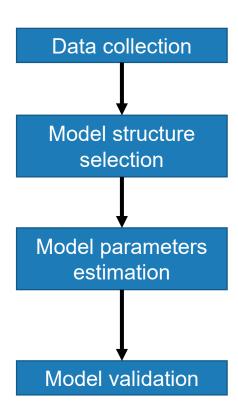
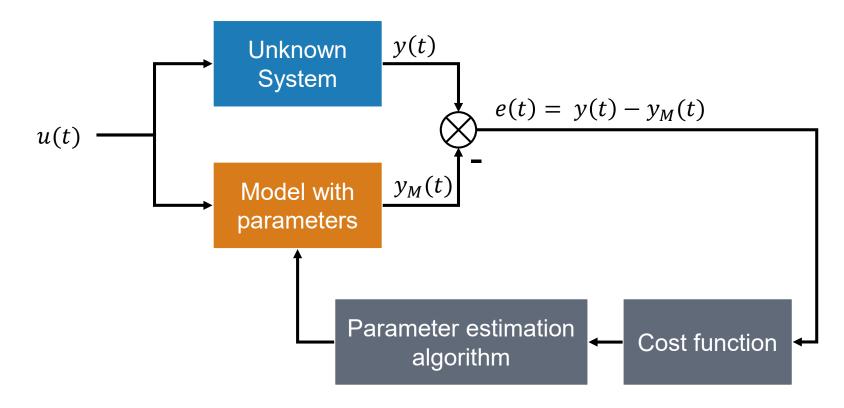

Course Syllabus

- Basic concepts in control theory
- Basic system classification
- Basic system properties
 - Static Characteristics
 - Dynamic Characteristics
- System Identification
- Basic types of controllers
- Control quality evaluation
- Control systems stability
- Controller design methods
- Digital control
- Sensors


Control Systems Engineering 7th Ed., p. 7

 Finding a mathematical model of a real system that describes its behavior as accurately as possible.


- System identification has two broad approaches:
 - Analytical (first-principles modeling)
 - Based on the laws of physics, chemistry, or mechanics of the system.
 - Derive equations directly from fundamental principles (e.g., Newton's laws, Kirchhoff's laws, thermodynamics).
 - Experimental (data-driven modeling)
 - Based on measured input-output data without fully relying on physics.
 - Model structure and parameters are estimated from data rather than derived from laws.

- System identification involves the following steps:
 - obtaining good experimental data
 - apply input signals like impulse, step, sinusoidal, pseudo-random signal (PRBS) or white noise
 - measure input and output data under the chosen excitation
 - selecting a suitable model structure
 - mathematical relationship between input and output variables that contains unknown parameters
 - examples: transfer function (with adjustable poles and zeros), state-space equations, nonlinear parameterized functions
 - estimating the model parameters
 - first, select the cost function mathematical expression that measures the "error" between the measured system output and the model's predicted output, e.g. mean squared error $\frac{1}{N}\sum_{1}^{N}(y-y_{M})^{2}$
 - then, minimize this cost function through an optimization process by adjusting the model parameters
 - evaluating the model accuracy
 - determine if the identified model is good enough for its intended purpose
 - test the model on new input-output data not used in training

- System identification can be categorized depending on when and how the model is estimated
 - Offline Identification (Batch)
 - Collect input-output data first, then process it afterward (in one batch) to estimate model parameters.
 - More accurate results since full dataset is used.
 - Used in system that don't change with time and can be run and repeated.
 - Online Identification (Adaptive)
 - Update model parameters continuously as new measurements arrive.
 - Parameters are refined in real time.
 - Useful for time-varying systems (whose parameters change over time).
 - Can adapt to disturbances, wear, or changes in system behavior.

Model parameter estimation process

Models can be classified according to several key characteristics, depending on how they represent the system's behavior and how they are derived:

Physical vs. Mathematical Models

- Physical based on physical laws, parameters have physical meaning
- Mathematical derived from input-output data without explicit physical interpretation

Static vs. Dynamic Models

- Static output depends only on current input
- Dynamic output depends on present and past inputs (and possibly past outputs)

Stationary vs. Non-Stationary Models

- Stationary model parameters do not change with time
- Non-Stationary (Time-Varying) model parameters change over time

Classification of models:

- Deterministic vs. Stochastic Models
 - Deterministic no randomness, same input always gives same output
 - Stochastic includes random processes or noise
- Linear vs. Nonlinear Models
 - Linear superposition principle holds
 - Nonlinear output not proportional to input
- Continuous-Time vs. Discrete-Time Models
 - Continuous-Time variables defined for all $t \in \mathbb{R}$
 - Discrete-Time variables defined only at sampling instants $t = kT_s$

Methods of experimental identification

Experimental (data-driven) identification determines a system's model from measured input—output data, rather than from physical laws.

Category	Handles noise?	Updates in Real Time?	Example Methods
Deterministic Methods	× No	× No	Step / Impulse response, Frequency response
Stochastic Methods	✓ Yes	× No	ARX, ARMAX, BJ
Adaptive Methods	✓ Yes	✓ Yes	Recursive Least Squares, Kalman Filter, Least Mean Square

Methods of experimental identification

Deterministic Methods

- These assume no randomness the relationship between input and output is deterministic (noise-free or negligible).
- Step response, Impulse response, Frequency response, Bode analysis

Stochastic Methods

- These explicitly model random disturbances and noise in the data.
- ARX (AutoRegressive with eXogenous input)
- ARMAX (AutoRegressive Moving Average with eXogenous input)
- Output Error (OE), Box-Jenkins (BJ)

Adaptive Methods

- These update parameters continuously or recursively as new data arrives.
- Used when the system is time-varying or operating conditions change.
- Recursive Least Squares, Kalman Filter, Least Mean Square...