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■ Basic concepts in control theory
■ Basic system classification
■ Basic system properties
■ System Identification
■ Basic types of controllers
■ Control quality evaluation 
■ Control systems stability
■ Controller design methods
■ Digital control
■ Sensors
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■ The controller continuously compares the measured value of the controlled 
variable 𝒚𝒚(𝒕𝒕) with the desired value 𝒖𝒖(𝒕𝒕)

■ Based on the resulting error signal 𝒆𝒆 𝒕𝒕 = 𝒖𝒖 𝒕𝒕 − 𝒚𝒚 𝒕𝒕 it produces an output 
signal 𝑟𝑟(𝑡𝑡) that influences the plant so as to reduce 𝑒𝑒 𝑡𝑡 → 0 or to as small a 
value as possible.

■ The controller maintains accurate tracking of the desired value 𝑢𝑢(𝑡𝑡) and 
ensures a high-quality transient response (smooth and stable), even when 
the system is affected by disturbances or parameter changes.

Controller Plant
𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ There are many controller types, but most classical control systems start 
with PID control, which stands for:
■ Proportional (P)
■ Integral (I)
■ Derivative (D)

■ The names of the controllers P, I, and D are derived from the method of 
generating the output signal based on the error signal 𝑒𝑒(𝑡𝑡)
■ The P stands for Proportional, which is based on the current error
■ The I stands for Integral, which is based on the accumulated error over time
■ The D stands for Derivative, which is based on the rate of change of the error.
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■ The proportional controller generates a control signal that is 
directly proportional to the current error

■ The ideal P controller is described by the following equation
𝑟𝑟 𝑡𝑡 = 𝐾𝐾𝑃𝑃𝑒𝑒 𝑡𝑡

■ The constant of proportionality 𝐾𝐾𝑃𝑃 is called proportional gain
■ Transfer function

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

= 𝐾𝐾𝑃𝑃

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)
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■ The control action increases when the error is large and 
decreases when the error is small

■ A larger proportional gain 𝐾𝐾𝑃𝑃 leads to a faster response but 
may cause overshoot or instability

■ A larger proportional gain 𝐾𝐾𝑃𝑃 reduces steady-state error but 
cannot eliminate it completely

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)
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■ To model real hardware behavior, a first-order lag (time constant) is 
introduced:

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=
𝐾𝐾𝑃𝑃

𝑇𝑇𝑇𝑇 + 1
■ where 𝐾𝐾𝑃𝑃 is proportional gain and 𝑇𝑇 is controller time constant
■ The controller output still increases with the error, but with a finite 

speed.
■ The term 𝑇𝑇𝑇𝑇 + 1 introduces a delay (inertia) that reflects the 

physical dynamics of the controller or actuator.

𝐾𝐾𝑃𝑃
𝑇𝑇𝑇𝑇 + 1

𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)
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■ DC motor control with real P controller

■ 𝐾𝐾𝑃𝑃 = 0.05, 0.1, 0.5, 1 and 𝑇𝑇 = 0.005 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝑃𝑃 leads to a faster response
■ A larger 𝐾𝐾𝑃𝑃 may cause overshoot or instability
■ A larger 𝐾𝐾𝑃𝑃 reduces steady-state error

𝐾𝐾𝑃𝑃
𝑇𝑇𝑠𝑠 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ DC motor control with real P controller

■ 𝐾𝐾𝑃𝑃 = 0.5 and 𝑇𝑇 = 0.005, 0.05, 0.1, 0.3
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝑇𝑇 leads to a slower response
■ A larger 𝑇𝑇 leads to lower overshoot
■ A larger 𝑇𝑇 does not change steady-state error

𝐾𝐾𝑃𝑃
𝑇𝑇𝑠𝑠 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ MATLAB Code that was used to generate step responses
clear; clc; close all;
s = tf('s'); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order approximation
K_list = [0.05 0.1 0.5 1];
T_list = [0.005 0.05 0.1 0.3];
figure;
hold on;
for K=K_list

C = K/(0.005*s+1); % controller transfer function
T=feedback(G1*C,1,-1); % feedback loop transfer function
step(T);

end
legend('Kp=0.05','Kp=0.1','Kp=0.5','Kp=1');

figure;
hold on;
for T=T_list

C = 0.5/(T*s+1); % controller transfer function
Tr=feedback(G1*C,1,-1); % feedback loop transfer function
step(Tr);

end
legend('T=0.005','T=0.05','T=0.1','T=0.3');
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■ Analog implementation of a Proportional (P) controller
■ A proportional controller produces an output proportional to the instantaneous error
■ In analog hardware this is implemented as a simple amplifier with gain 𝐾𝐾𝑃𝑃
■ Most common implementation is non-inverting operational amplifier (op-amp)

+

-

𝑅𝑅𝑔𝑔 𝑅𝑅𝑓𝑓

𝑈𝑈𝐼𝐼𝐼𝐼
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

Transfer function with an ideal op-amp
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂
𝑈𝑈𝐼𝐼𝐼𝐼

= 1 +
𝑅𝑅𝑓𝑓
𝑅𝑅𝑔𝑔
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■ Ideal operational amplifier (op-amp)
■ The op-amp has two inputs:

■ “+” (non-inverting input)
■ “–” (inverting input)

■ It is an electronic device that compares two voltages and produces a large voltage 
output that is proportional to the difference between them

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐴𝐴(𝑈𝑈+ − 𝑈𝑈−)
■ where 𝐴𝐴 is extremely high from 105 to 108 and is called amplifier’s (open-loop) gain
■ Because the op-amp can precisely measure and amplify small differences, we can 

use it to create analog control laws – proportional, integral, or derivative actions –
simply by connecting resistors and capacitors around it.

+

-inverting input

non-inverting input
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

𝑈𝑈+

𝑈𝑈−

𝐴𝐴
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■ Ideal operational amplifier (op-amp)
■ The magic of the op-amp comes when we use feedback – connecting part of the 

output back to the inverting input.
■ Feedback allows the op-amp to automatically adjust its output so that 𝑈𝑈+ ≈ 𝑈𝑈−
■ This makes the circuit’s behavior predictable and linear, even though the op-amp 

itself has a huge gain.
■ With two resistors we can construct the fundamental feedback network called 

non-inverting amplifier

+

-inverting input

non-inverting input
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

𝑈𝑈+

𝑈𝑈−

𝐴𝐴

𝑅𝑅𝑔𝑔 𝑅𝑅𝑓𝑓

+

-

𝑈𝑈𝐼𝐼𝐼𝐼
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂
-

𝑈𝑈𝐼𝐼𝐼𝐼

𝛽𝛽 =
𝑅𝑅𝑔𝑔

𝑅𝑅𝑓𝑓 + 𝑅𝑅𝑔𝑔

𝐴𝐴

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂
𝑈𝑈𝐼𝐼𝐼𝐼

= 1 +
𝑅𝑅𝑓𝑓
𝑅𝑅𝑔𝑔
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■ The integral controller generates a control signal that is proportional to the 
accumulated (integrated) error over time

𝐾𝐾𝐼𝐼
𝑠𝑠

𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

■ The ideal I controller is described by the 
following equation

𝑟𝑟 𝑡𝑡 = 𝐾𝐾𝐼𝐼 �
0

𝑡𝑡
𝑒𝑒 𝜏𝜏 𝑑𝑑𝑑𝑑

■ The constant of proportionality 𝐾𝐾𝐼𝐼 is called 
integral gain

■ Transfer function

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=
𝐾𝐾𝐼𝐼
𝑠𝑠
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■ The integral term eliminates steady-state error by 
continuously adjusting the control output until 𝑒𝑒(𝑡𝑡) averages to 
zero

■ Provides zero steady-state error but may slow the response 
or cause oscillations.

■ Often used together with proportional action (PI control).

𝐾𝐾𝐼𝐼
𝑠𝑠

𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)
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■ The ideal integrator is a useful mathematical model – but not physically 
realizable

𝐾𝐾𝐼𝐼
𝑠𝑠(𝑇𝑇𝑇𝑇 + 1)

𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

■ To model real integral controller, a first-
order lag (time constant) is introduced:

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=
𝐾𝐾𝐼𝐼

𝑠𝑠(𝑇𝑇𝑇𝑇 + 1)
■ where 𝐾𝐾𝐼𝐼 is integral gain and 𝑇𝑇 is 

controller time constant
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■ DC motor control with real I controller

■ 𝐾𝐾𝐼𝐼 = 0.05, 0.1, 0.5, 1.5 and 𝑇𝑇 = 0.005 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝐼𝐼 leads to a faster response
■ A larger 𝐾𝐾𝐼𝐼 may cause overshoot or instability
■ Steady-state error is zero for all 𝐾𝐾𝐼𝐼

𝐾𝐾𝐼𝐼
𝑠𝑠(𝑇𝑇𝑇𝑇 + 1)

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ DC motor control with real I controller

■ 𝐾𝐾𝐼𝐼 = 0.1 and 𝑇𝑇 = 0.005, 0.05, 0.1, 0.3
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝑇𝑇 leads to a slower response
■ A larger 𝑇𝑇 may lead to instability

𝐾𝐾𝐼𝐼
𝑠𝑠(𝑇𝑇𝑇𝑇 + 1)

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−



12RSEN Control Systems and Sensors

Basic types of controllers
Integral Controller

19

■ MATLAB Code that was used to generate step responses
clear; clc; close all;
s = tf('s'); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order approximation
K_list = [0.05 0.1 0.5 1.5];
T_list = [0.005 0.05 0.1 0.3];
figure;
hold on;
for K=K_list

C = K/s/(0.005*s+1); % controller transfer function
T=feedback(G1*C,1,-1); % feedback loop transfer function
step(T);

end
legend('Ki=0.05','Ki=0.1','Ki=0.5','Ki=1.5');

figure;
hold on;
for T=T_list

C = 0.1/s/(T*s+1); % controller transfer function
Tr=feedback(G1*C,1,-1); % feedback loop transfer function
step(Tr);

end
legend('T=0.005','T=0.05','T=0.1','T=0.3');
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■ Analog implementation of an Integral (I) controller
■ An integral controller produces an output proportional to the integrated 

(accumulated) error over time
■ In analog hardware this is implemented with op-amp, a resistor and a capacitor in 

inverting op-amp configuration

+

-

𝑅𝑅𝑔𝑔
𝐶𝐶

𝑈𝑈𝐼𝐼𝐼𝐼

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

Transfer function with an ideal op-amp
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂
𝑈𝑈𝐼𝐼𝐼𝐼

= −
1

𝑅𝑅𝑔𝑔𝐶𝐶𝐶𝐶
=
− ⁄1 𝑅𝑅𝑔𝑔𝐶𝐶

𝑠𝑠 𝐾𝐾𝐼𝐼 = −
1
𝑅𝑅𝑔𝑔𝐶𝐶
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■ The derivative controller generates a control signal that is 
proportional to the rate of change of the error

■ The ideal D controller is described by the following equation

𝑟𝑟 𝑡𝑡 = 𝐾𝐾𝐷𝐷
𝑑𝑑𝑒𝑒 𝑡𝑡
𝑑𝑑𝑡𝑡

■ The constant of proportionality 𝐾𝐾𝐷𝐷 is called derivative gain
■ Transfer function

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

= 𝐾𝐾𝐷𝐷s

𝐾𝐾𝐷𝐷s
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)
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■ Reacts to how quickly the error is changing, predicting future behavior of the 
system

■ In the left curve, the control error decreases rapidly and the control action 
should be cautious, in order not to cause an overshoot

■ In the right curve, a decrease in the control error is followed by a sudden 
increase; here, the controller should apply a large control signal in order to 
lower the control error.

𝐾𝐾𝐷𝐷s
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

https://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTF05/engforel.pdf
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■ Improves transient response and damping, reducing overshoot and 
oscillations

■ Highly sensitive to measurement noise, so derivative action must be 
used carefully and often with filtering

■ Derivative controllers can only be used in a feedback path, not alone in 
the main control path
■ The output of a derivative controller depends on the rate of change of the error 𝑒𝑒(𝑡𝑡)
■ This means that the output is nonzero only when the input is changing.
■ If the control error 𝑒𝑒(𝑡𝑡) is constant, then its derivative is zero – so the controller 

output is zero as well

𝐾𝐾𝐷𝐷s
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)
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■ The ideal derivative is not physically implementable, because it would 
require infinite bandwidth and infinite gain

■ To make it physically realizable and 
noise-resistant, we add a first-order 
low-pass filter that limits the 
high-frequency gain

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=
𝐾𝐾𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 + 1

■ where 𝐾𝐾𝐷𝐷 is derivative gain and 𝑇𝑇 is
controller time constant
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■ Analog implementation of a Derivative (D) controller
■ An derivative controller produces an output proportional to the to the rate of change 

of the error
■ In analog hardware this is implemented with op-amp, a resistor and a capacitor in 

inverting op-amp configuration

+

-

𝑅𝑅𝑓𝑓𝐶𝐶

𝑈𝑈𝐼𝐼𝐼𝐼

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

Transfer function with an ideal op-amp
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂
𝑈𝑈𝐼𝐼𝐼𝐼

= −𝑅𝑅𝑓𝑓𝐶𝐶𝐶𝐶 𝐾𝐾𝐷𝐷 = −𝑅𝑅𝑓𝑓𝐶𝐶
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Controller Control Law Main effect Limitations
P 𝐾𝐾𝑃𝑃𝑒𝑒 𝑡𝑡 Faster response, reduces error Steady-state error remains

I 𝐾𝐾𝐼𝐼 �
0

𝑡𝑡
𝑒𝑒 𝜏𝜏 𝑑𝑑𝑑𝑑 Eliminates steady-state error Slower, may oscillate

D 𝐾𝐾𝐷𝐷
𝑑𝑑𝑒𝑒 𝑡𝑡
𝑑𝑑𝑡𝑡

Improves stability and damping Sensitive to noise
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■ The PI controller combines the fast response of the P action with the zero steady-state 
error of the I action

■ The ideal PI controller is described by the following equation

𝑟𝑟 𝑡𝑡 = 𝐾𝐾𝑃𝑃𝑒𝑒 𝑡𝑡 + 𝐾𝐾𝐼𝐼 �
0

𝑡𝑡
𝑒𝑒 𝜏𝜏 𝑑𝑑𝑑𝑑

■ where 𝐾𝐾𝑃𝑃 is proportional gain, 𝐾𝐾𝐼𝐼 is integral gain
■ Transfer function

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

= 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

= 𝐾𝐾𝑃𝑃 1 +
𝐾𝐾𝐼𝐼
𝐾𝐾𝑃𝑃

1
𝑠𝑠

= 𝐾𝐾𝑃𝑃 1 +
1
𝑇𝑇𝐼𝐼𝑠𝑠

■ where 𝑇𝑇𝐼𝐼 = 𝐾𝐾𝑃𝑃
𝐾𝐾𝐼𝐼

is integral time constant

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

𝐾𝐾𝐼𝐼
𝑠𝑠
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■ The PI controller is the most widely used type of controller in practice
■ Compared to Proportional controller alone → the PI controller removes 

steady-state offset
■ Compared to Integral controller alone → it is faster and causes less 

overshoot
■ It provides good dynamic and steady-state performance, and it is suitable 

even for controlling Type 1 systems, where the plant itself already 
contains one integrator

■ Easy to tune (manual or automatic methods) – has only two parameters 
𝐾𝐾𝑃𝑃 and 𝐾𝐾𝐼𝐼

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

𝐾𝐾𝐼𝐼
𝑠𝑠
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■ Real (practical) PI controller
■ The ideal form can be made practical by limiting the integrator’s 

bandwidth with a filter, giving:

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

= 𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

1
𝑇𝑇𝑇𝑇 + 1

where 𝑇𝑇 is filter time constant

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

𝐾𝐾𝐼𝐼
𝑠𝑠

1
𝑇𝑇𝑇𝑇 + 1
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■ DC motor control with real PI controller

■ 𝐾𝐾𝑃𝑃 = 0.1, 0.5, 1.0, 5.0 and 𝐾𝐾𝐼𝐼 = 0.8 and 𝑇𝑇 = 0.5 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝑃𝑃 leads to a faster response but 
may cause overshoot

■ A larger 𝐾𝐾𝑃𝑃 amplifies measurement noise

𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

1
𝑇𝑇𝑇𝑇 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ DC motor control with real PI controller

■ 𝐾𝐾𝑃𝑃 = 0.2 and 𝐾𝐾𝐼𝐼 = 0.2, 0.6 1.0 5.0 and 𝑇𝑇 = 0.5 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝐼𝐼 leads to a faster response but 
may cause overshoot

𝐾𝐾𝑃𝑃 +
𝐾𝐾𝐼𝐼
𝑠𝑠

1
𝑇𝑇𝑇𝑇 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ MATLAB Code that was used to generate step responses
clear; clc; close all;
s = tf('s'); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order approximation
Kp_list = [0.1 0.5 1 5];
Ki_list = [0.2 0.6 1 5];
figure; hold on;
Ki = 0.8; %integral gain
Tf = 0.1; % filter time constant
for Kp=Kp_list

C = (Kp+Ki/s)/(Tf*s+1); % controller transfer function
T=feedback(G1*C,1,-1); % feedback loop transfer function
step(T,1);

end
title('Step Response Comparison');
legend('Kp=0.1','Kp=0.5','Kp=1','Kp=5');

figure; hold on;
Kp = 0.8;
for Ki=Ki_list

C = (Kp+Ki/s)/(Tf*s+1); % controller transfer function
Tr=feedback(G1*C,1,-1); % feedback loop transfer function
step(Tr,1);

end
title('Step Response Comparison');
legend('Ki=0.2','Ki=0.6','Ki=1','Ki=5');
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■ Analog implementation of PI controller
■ In analog hardware it is implemented with three op-amps in inverting op-amp 

configuration

Transfer function with ideal op-amps
𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂
𝑈𝑈𝐼𝐼𝐼𝐼

= − −
𝑅𝑅2
𝑅𝑅1

−
1

𝑅𝑅3𝐶𝐶𝐶𝐶
=
𝑅𝑅2
𝑅𝑅1

+
1

𝑅𝑅3𝐶𝐶𝐶𝐶

𝐾𝐾𝑃𝑃 =
𝑅𝑅2
𝑅𝑅1

,𝐾𝐾𝐼𝐼 =
1
𝑅𝑅3𝐶𝐶

+

-

𝑅𝑅3 𝐶𝐶
𝑈𝑈𝐼𝐼𝐼𝐼

𝑈𝑈𝑂𝑂𝑂𝑂𝑂𝑂

+

-

𝑅𝑅1 𝑅𝑅2

+

-

𝑅𝑅0

𝑅𝑅0𝑅𝑅0

P Controller

I Controller

Summing 
amplifier
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■ A PD controller improves speed and stability rather than steady-state accuracy
■ The ideal PD controller is described by the following equation

𝑟𝑟 𝑡𝑡 = 𝐾𝐾𝑃𝑃𝑒𝑒 𝑡𝑡 + 𝐾𝐾𝐷𝐷
𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

■ where 𝐾𝐾𝑃𝑃 is proportional gain, 𝐾𝐾𝐷𝐷 is derivative gain
■ Transfer function

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠) = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐷𝐷𝑠𝑠 = 𝐾𝐾𝑃𝑃 1 +

𝐾𝐾𝐷𝐷
𝐾𝐾𝑃𝑃

𝑠𝑠 = 𝐾𝐾𝑃𝑃 1 + 𝑇𝑇𝐷𝐷𝑠𝑠

■ where 𝑇𝑇𝐷𝐷 = 𝐾𝐾𝐷𝐷
𝐾𝐾𝑃𝑃

is derivative time constant

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

𝐾𝐾𝐷𝐷𝑠𝑠
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■ A PD controller improves speed and stability rather than 
steady-state accuracy

■ The limitation of a P controller: increasing 𝐾𝐾𝑃𝑃 speeds up the 
response but also increases overshoot and can cause 
oscillation

■ We want the system to respond faster without becoming 
unstable

■ So we add a derivative term to anticipate changes in the error 
– like predicting where the system is heading

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

𝐾𝐾𝐷𝐷𝑠𝑠
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■ Real (practical) PD controller
■ To make ideal PD controller realizable, we need to add a small 

time constant 𝑇𝑇 (a low-pass filter) in the denominator:

𝐺𝐺 𝑠𝑠 =
𝑅𝑅(𝑠𝑠)
𝐸𝐸(𝑠𝑠)

=
𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 + 1

where 𝑇𝑇 is filter time constant

𝐾𝐾𝑃𝑃
𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)

𝐾𝐾𝐷𝐷𝑠𝑠

1
𝑇𝑇𝑇𝑇 + 1
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■ DC motor control with real PD controller

■ 𝐾𝐾𝑃𝑃 = 1, 3, 5, 10 and 𝐾𝐾𝐷𝐷 = 0.01 and 𝑇𝑇 = 0.1 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝑃𝑃 leads to a faster response but 
may cause overshoot

■ A larger 𝐾𝐾𝑃𝑃 amplifies measurement noise

𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ DC motor control with real PD controller

■ 𝐾𝐾𝑃𝑃 = 1, 3, 5, 10 and 𝐾𝐾𝐷𝐷 = 0.01 and 𝑇𝑇 = 0.1 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝑃𝑃 leads to a faster response but 
may cause overshoot

■ A larger 𝐾𝐾𝑃𝑃 amplifies measurement noise

𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ DC motor control with real PD controller

■ 𝐾𝐾𝑃𝑃 = 5 and 𝐾𝐾𝐷𝐷 = 0.001, 0.01, 0.02, 0.03 and 𝑇𝑇 = 0.1 𝑠𝑠
■ Input 𝑢𝑢(𝑡𝑡): Unit step function

■ A larger 𝐾𝐾𝐷𝐷 leads to a faster response and
improved stability (lower overshoot)

■ A larger 𝐾𝐾𝐷𝐷 amplifies measurement noise

𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐷𝐷𝑠𝑠
𝑇𝑇𝑇𝑇 + 1

0.031
8.832 � 10−6𝑠𝑠 + 0.0009778

𝑦𝑦(𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑒𝑒(𝑡𝑡)𝑢𝑢(𝑡𝑡)

−
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■ MATLAB Code that was used to generate step responses
clear; clc; close all;
s = tf('s'); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order 
approximation
Kp_list = [1 3 5 10];
Kd_list = [0.001 0.01 0.02 0.03];
f1 = figure; hold on; % open figure for plotting step responses
f2 = figure; hold on; % open another figure for ploting controller outputs
Kd = 0.01; %derivative gain
Tf = 0.1; % filter time constant
for Kp=Kp_list

C = (Kp+Kd*s)/(Tf*s+1); % controller transfer function
T=feedback(G1*C,1,-1); % feedback loop transfer function
PDout=feedback(C,G1); % controller output vs. input transfer func.
figure(f1); step(T);
figure(f2); step(PDout);

end
figure(f1);
title('Step Response Comparison');
legend('Kp=1','Kp=3','Kp=5','Kp=10');
figure(f2);
title('Controller Output');
legend('Kp=1','Kp=3','Kp=5','Kp=10');

figure; hold on;

Kp = 5;

for Kd=Kd_list

C = (Kp+Kd*s)/(Tf*s+1); % controller transfer function

Tr=feedback(G1*C,1,-1); % feedback loop transfer function

step(Tr);

end

title('Step Response Comparison');

legend('Kd=0.001','Kd=0.01','Kd=0.02','Kd=0.03');
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