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Basic types of controllers

u(t) e(t)
=ﬁ§ g4 Controller

m The controller continuously compares the measured value of the controlled
variable y(t) with the desired value u(t)

m Based on the resulting error signal e(t) = u(t) — y(t) it produces an output
signal r(t) that influences the plant so as to reduce e(t) — 0 or to as small a
value as possible.

m The controller maintains accurate tracking of the desired value u(t) and
ensures a high-quality transient response (smooth and stable), even when
the system is affected by disturbances or parameter changes.
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Basic types of controllers

m [here are many controller types, but most classical control systems start
with PID control, which stands for:
m Proportional (P)
m Integral (l)
m Derivative (D)

m The names of the controllers P, |, and D are derived from the method of
generating the output signal based on the error signal e(t)

m The P stands for Proportional, which is based on the current error
m The | stands for Integral, which is based on the accumulated error over time
m The D stands for Derivative, which is based on the rate of change of the error.
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Basic types of controllers

Proportional Controller e(t) r(t)

m The proportional controller generates a control signal that is
directly proportional to the current error

m The ideal P controller is described by the following equation
T(t) —_ er(t)
m The constant of proportionality K, is called proportional gain

m Transfer function

R
G(s) =£=KP
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Basic types of controllers

Proportional Controller e(t) r(t)

m The control action increases when the error is large and
decreases when the error is small

m Alarger proportional gain K, leads to a faster response but
may cause overshoot or instability

m Alarger proportional gain K, reduces steady-state error but
cannot eliminate it completely
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Basic types of controllers

Proportional Controller e(t) r(t)

m To model real hardware behavior, a first-order lag (time constant) is
iIntroduced:

R(s)  Kp
E(s) Ts+1
m where K; is proportional gain and T is controller time constant

G(s) =

m The controller output still increases with the error, but with a finite
speed.

m Theterm Ts + 1 introduces a delay (inertia) that reflects the
physical dynamics of the controller or actuator.
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Basic types of controllers
Proportional Controller

m DC motor control with real P controller

u(t) 0.031 y(t)
8.832-10-°s + 0.0009778

m Kp =0.050.1,0.5,1 and T = 0.005 s
Input u(t): Unit step function

m Alarger K, leads to a faster response
m Alarger K, may cause overshoot or instability
m Alarger Kp reduces steady-state error
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Basic types of controllers
Proportional Controller

m DC motor control with real P controller

Step Response Comparison

T=0.005
T=0.05

T=01 | |
T=0.3

u(t) 0.031 y(t)
8.832-10-°s + 0.0009778

m Kp =0.5 and T = 0.005,0.05,0.1,0.3
Input u(t): Unit step function

Amplitude

m Alarger T leads to a slower response
m Alarger T leads to lower overshoot
m Alarger T does not change steady-state error
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Basic types of controllers
Proportional Controller

m MATLAB Code that was used to generate step responses

clear; clc; close all;

¢}

s = tf('s"); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order approximation

K list = [0.05 0.1 0.5 1];

T list = [0.005 0.05 0.1 0.3];
figure;

hold on;

for K=K list
C = K/(0.005*s+1); % controller transfer function
T=feedback (G1*C,1,-1); % feedback loop transfer function
step(T);

end

legend ('Kp=0.05", '"Kp=0.1", '"Kp=0.5", '"Kp=1") ;

figure;

hold on;

for T=T list
C = 0.5/(T*s+1); % controller transfer function
Tr=feedback (G1*C,1,-1); % feedback loop transfer function
step(Tr) ;

end

legend ('T=0.005",'T=0.05"','T=0.1"','T=0.3");
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Basic types of controllers
Proportional Controller

m Analog implementation of a Proportional (P) controller
m A proportional controller produces an output proportional to the instantaneous error
m In analog hardware this is implemented as a simple amplifier with gain Kp
m Most common implementation is non-inverting operational amplifier (op-amp)

Ry Ry
Transfer function with an ideal op-amp
U R
- our _ 4 4 °f
Uy — X Uour Un R
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Basic types of controllers ;
Proportional Controller inverting input ——

non-inverting input

m ldeal operational amplifier (op-amp) -

m The op-amp has two inputs:
m “+” (non-inverting input)
m """ (inverting input)
m Itis an electronic device that compares two voltages and produces a large voltage
output that is proportional to the difference between them
Upyr = AUy — U-)
m Wwhere A is extremely high from 10° to 108 and is called amplifier’s (open-loop) gain

m Because the op-amp can precisely measure and amplify small differences, we can
use it to create analog control laws — proportional, integral, or derivative actions —
simply by connecting resistors and capacitors around it.
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Basic types of controllers ;
Proportional Controller inverting input ——

non-inverting input
Uy

m ldeal operational amplifier (op-amp)

m The magic of the op-amp comes when we use feedback — connecting part of the
output back to the inverting input.

m Feedback allows the op-amp to automatically adjust its output so that U, = U_

m T[his makes the circuit’'s behavior predictable and linear, even though the op-amp
itself has a huge gain.

m With two resistors we can construct the fundamental feedback network called
non-inverting amplifier

A

UOUT

Uy *—
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Basic types of controllers
Integral Controller

e(t) E r(t)

m The integral controller generates a control signal that is proportional to the

accumulated (integrated) error over time

m Theideal | controller is described by the
following equation
t

r(t) = K,J e(t)dr

0

m The constant of proportionality K; is called
integral gain

m Transfer function

G(s) = R(s) K;

E(s) s
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Basic types of controllers

e(t) r(t)
Integral Controller #

m The integral term eliminates steady-state error by
continuously adjusting the control output until e(t) averages to
Zero

m Provides zero steady-state error but may slow the response
or cause oscillations.

m Often used together with proportional action (Pl control).
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Basic types of controllers o) O
Integral Controller %

m Theideal integrator is a useful mathematical model — but not physically

rea”zable . Response of G(s) = 1/s/(0.2"s+1) to a Square Wave Input
m To model real integral controller, a first-
order lag (time constant) is introduced: = - 7
G(s) = R(s) _ K; | //__
E(s) s(Ts+1) g —
m where K; is integral gainand T is </
controller time constant
05
Ouput ) (Systom Responet)
o 2 s 6 5 10

Time (seconds)
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Basic types of controllers
Integral Controller

m DC motor control with real | controller

Step Response Comparison

1.2

u(t) 0.031 y(t)
8.832-10-°s + 0.0009778

—_—
T

o
(o]
T

m K; =0.050.1,0.5,1.5 and T = 0.005 s
Input u(t): Unit step function

Amplitude
o
()]

o
~

m Alarger K; leads to a faster response
m Alarger K; may cause overshoot or instability
m Steady-state error is zero for all K; 0 05 : 15 2
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Basic types of controllers
Integral Controller

m DC motor control with real | controller

u(t) 0.031 y(t)
8.832-10-°s + 0.0009778

m K;=0.1 and T = 0.005,0.05,0.1,0.3
m Input u(t): Unit step function

m Alarger T leads to a slower response
m Alarger T may lead to instability
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Basic types of controllers
Integral Controller

m MATLAB Code that was used to generate step responses

clear; clc; close all;

s = tf('s"); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order approximation
K list = [0.05 0.1 0.5 1.5];

T list = [0.005 0.05 0.1 0.3];

figure;

hold on;

for K=K list
C = K/s/(0.005*s+1); % controller transfer function
T=feedback (G1*C,1,-1); % feedback loop transfer function
step(T);

end

legend ('Ki=0.05", 'Ki=0.1"', 'Ki=0.5", '"Ki=1.5");

figure;

hold on;

for T=T list
C =0.1/s/(T*s+1); % controller transfer function
Tr=feedback (G1*C,1,-1); % feedback loop transfer function
step(Tr) ;

end

legend ('T=0.005",'T=0.05"','T=0.1"','T=0.3");
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Basic types of controllers

Integral Controller

m Analog implementation of an Integral (I) controller
m An integral controller produces an output proportional to the integrated

(accumulated) error over time

m In analog hardware this is implemented with op-amp, a resistor and a capacitor in

inverting op-amp configuration

R C

g
Uy e—_1 L |

:+

UOUT
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Transfer function with an ideal op-amp
Uwr 1 —1/R4C 1

K, = ————
"7 R,C

UIN RgCS S
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Basic types of controllers

- . e(t) r(t)
Derivative Controller %

m The derivative controller generates a control signal that is
proportional to the rate of change of the error

m The ideal D controller is described by the following equation
de(t)

dt
m The constant of proportionality K, is called derivative gain

m Transfer function

r(t) = Kp

R(s) _

o

KpS
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Basic types of controllers W

Derivative Controller

m Reacts to how quickly the error is changing, predicting future behavior of the
system

€ e

A A

P P

— —
t time t time

m In the left curve, the control error decreases rapidly and the control action
should be cautious, in order not to cause an overshoot

m Inthe right curve, a decrease in the control error is followed by a sudden
increase; here, the controller should apply a large control signal in order to
lower the control error.
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Basic types of controllers

- . e(t) r(t)
Derivative Controller %

m Improves transient response and damping, reducing overshoot and
oscillations

m Highly sensitive to measurement noise, so derivative action must be
used carefully and often with filtering

m Derivative controllers can only be used in a feedback path, not alone in
the main control path
m The output of a derivative controller depends on the rate of change of the error e(t)
m This means that the output is nonzero only when the input is changing.

m If the control error e(t) is constant, then its derivative is zero — so the controller
output is zero as well

12RSEN Control Systems and Sensors
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Basic types of controllers
Derivative Controller

m The ideal derivative is not physically implementable, because it would

require infinite bandwidth and infinite gain

To make it physically realizable and
noise-resistant, we add a first-order
low-pass filter that limits the
high-frequency gain

R(S) _ KDS

E(s) Ts+1

where K, is derivative gainand T is

15

—_—

o

Amplitude

G(s) =

o
3
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Basic types of controllers
Derivative Controller

m Analog implementation of a Derivative (D) controller

m An derivative controller produces an output proportional to the to the rate of change
of the error

m In analog hardware this is implemented with op-amp, a resistor and a capacitor in
inverting op-amp configuration
C Ry

Uin ’—l Transfer function with an ideal op-amp

U
_ 0T = —RiCs  Kp =—R;C

X Uour Uin
.-
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Basic types of controllers
Basic Controllers Summary

Controller | ControlLaw __|Maineffect ___________|Limitations __________

Kpe(t) Faster response, reduces error Steady-state error remains
t
I K; j e(t)dt Eliminates steady-state error Slower, may oscillate
0
de(t) - : i :
D D Improves stability and damping Sensitive to noise
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Basic types of controllers
Pl Controller

m The Pl controller combines the fast response of the P action with the zero steady-state
error of the | action

m The ideal Pl controller is described by the following equation
t

r(t) = Kpe(t) + K,J e(t)dr
0

m Wwhere K, is proportional gain, K; is integral gain

m Transfer function

G()—R(S)—K PER N PP B PR
> T EG) s F Kps) °F T;s

Kp . . ]
m where T, = =£ is integral time constant
I K;
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Basic types of controllers

e(t)
Pl Controller —

m The Pl controller is the most widely used type of controller in practice

m Compared to Proportional controller alone — the Pl controller removes
steady-state offset

m Compared to Integral controller alone — it is faster and causes less
overshoot

m It provides good dynamic and steady-state performance, and it is suitable
even for controlling Type 1 systems, where the plant itself already
contains one integrator

m Easy to tune (manual or automatic methods) — has only two parameters
Ky and K;
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Basic types of controllers
Pl Controller

m Real (practical) Pl controller

m The ideal form can be made practical by limiting the integrator’s
bandwidth with a filter, giving:

B R(s) B K; 1
G(s) = E(s) (KP T S ) (TS + 1)
where T is filter time constant

12RSEN Control Systems and Sensors 29



Basic types of controllers
Pl Controller

m DC motor control with real Pl controller

Step Response Comparison

/—\'

1.4

0.031

8.832-107%s + 0.0009778 121

m K, =0.1,05,1.0,50and K; =0.8and T =0.5s

Losr
Input u(t): Unit step function 5
o 0BT
|
m Alarger K, leads to a faster response but A / 0
may cause overshoot 02 / omt
Kp=5

m Alarger K, amplifies measurement noise e e
] 0.05% 01 015 02 025 03 035 04 045 0.5
Time (seconds)
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Basic types of controllers
Pl Controller

m DC motor control with real Pl controller

Step Response Comparison

1.5

Ki=0.2

0.031
8.832-107%s + 0.0009778 E:?E
Ki=5

m Kp=02andK; =0.2,061.050and T =0.5s
m Input u(t): Unit step function

Amplitude

0.5

m Alarger K; leads to a faster response but
may cause overshoot

0 01 02 03 04 05 06 07 08 09 1
Time (seconds)
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Basic types of controllers
Pl Controller

m  MATLAB Code that was used to generate step responses

clear; clc; close all;

s = tf('s'"); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order approximation
Kp list = [0.1 0.5 1 5];

Ki list = [0.2 0.6 1 5];

figure; hold on;

Ki = 0.8; %integral gain

Tf = 0.1; % filter time constant

for Kp=Kp list
C = (Kp+Ki/s)/ (Tf*s+1); % controller transfer function
T=feedback (G1*C,1,-1); % feedback loop transfer function
step(T,1);

end

title('Step Response Comparison');
legend ('Kp=0.1"', 'Kp=0.5"', 'Kp=1"', 'Kp=5") ;

figure; hold on;

Kp = 0.8;

for Ki=Ki list
C = (Kp+Ki/s)/ (Tf*s+1l); % controller transfer function
Tr=feedback (G1*C,1,-1); % feedback loop transfer function

step(Tr,1);
end
title('Step Response Comparison');
legend ('Ki=0.2"', 'Ki=0.6"', 'Ki=1"', 'Ki=5");
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Basic types of controllers

Pl Controller

m Analog implementation of Pl controller
m |n analog hardware it is implemented with three op-amps in inverting op-amp

configuration
Rl RZ RO
1 F—1 1—+1 1
P Controller .
+
R3
UIN ﬂ_L

| Controller
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UOUT

Transfer function with ideal op-amps

Upur R, 1 R, 1
Uy <_ R, R3CS> =R, "RyCs
R, 1
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Basic types of controllers
PD Controller

A PD controller improves speed and stability rather than steady-state accuracy
The ideal PD controller is described by the following equation
de(t)
dt
where Kp is proportional gain, K, is derivative gain
Transfer function

R(s) Kp
G(S)=_=KP+KDS:KP 1+—s =Kp(1+TDS)

r(t) = Kpe(t) + Kp

E(s) Kp

Kp . . . .
m where T, = =2 is derivative time constant
D~ k,
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Basic types of controllers

PD Controller ‘L

m A PD controller improves speed and stability rather than
steady-state accuracy

m The limitation of a P controller: increasing K speeds up the
response but also increases overshoot and can cause
oscillation

m We want the system to respond faster without becoming
unstable

m S0 we add a derivative term to anticipate changes in the error
— like predicting where the system is heading
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Basic types of controllers
PD Controller

m Real (practical) PD controller

m To make ideal PD controller realizable, we need to add a small
time constant T (a low-pass filter) in the denominator:

R(s) Kp+ Kps

E(s) Ts+1

where T is filter time constant

G(s) =
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Basic types of controllers
PD Controller

m DC motor control with real PD controller

1.4

u(t) e(t) [ (©) e y(t) N
%_ Ts+1 8.832-10-%s + 0.0009778

m Kp=1,3,5,10and K, =0.01and T =0.1s g o8y
Input u(t): Unit step function Eu_s-
oal

m Alarger K, leads to a faster response but
may cause overshoot =l
m Alarger K, amplifies measurement noise ’
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Basic types of controllers
PD Controller

m DC motor controi with real PD controller

u(t) e(tl Kp + Kps
%_ | Ts+1
m Kp=1,3,510and K, =0.01and T =0.1s
Input u(t): Unit step function

0.031 y(6)
8.832-10-5s + 0.0009778

m Alarger K, leads to a faster response but
may cause overshoot

m Alarger K, amplifies measurement noise
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Basic types of controllers
PD Controller

m DC motor control with real PD controller

Step Response Comparison
1.6 | |

u(t) o(t) WONwa r(t) 0.031 yao -
%_ Ts + 1 8:832- 1065 + 0.0009778

12

1F

m Kp =5and K, =0.001,0.01,0.02,0.03and T =0.1s
m Input u(t): Unit step function

Kd=0.001
Kd=0.01 | |
Kd=0.02
Kd=0.03

Amplitude
= =
()] (o2]

©
=N
T

m Alarger K, leads to a faster response and
improved stability (lower overshoot)

m Alarger K, amplifies measurement noise % 0.005

0.2

0.01 0.015 0.02 0.025
Time (seconds)
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Basic types of controllers
PD Controller

= MATLAB Code that was used to generate step responses
clear; clc; close all;

s = tf('s'"); % definition of symbolic variable
G1=0.031/(8.832e-6*s+9.9184e-6+0.0009679); % DC Motor first-order
approximation

Kp list = [1 3 5 10];

Kd list = [0.001 0.01 0.02 0.03];

fl1 = figure; hold on; % open figure for plotting step responses

f2 = figure; hold on; % open another figure for ploting controller outputs
Kd = 0.01; %derivative gain

Tf = 0.1; % filter time constant

for Kp=Kp_ list

end

C = (Kp+Kd*s)/ (Tf*s+1l); % controller transfer function

T=feedback (G1*C,1,-1); % feedback loop transfer function
PDout=feedback (C,Gl); % controller output vs. input transfer func.
figure (fl); step(T);

figure (£2); step (PDout) ;

figure (fl);

title('Step Response Comparison');
legend ('Kp=1"', '"Kp=3"', '"Kp=5"', 'Kp=10") ;
figure (£2);

title('Controller Output');

legend ('Kp=1"', 'Kp=3"', 'Kp=5"', 'Kp=10") ;

12RSEN Control Systems and Sensors

figure; hold on;

Kp = 5;

for Kd=Kd list
C = (Kp+Kd*s)/ (Tf*s+1); % controller transfer function
Tr=feedback (G1*C,1,-1); % feedback loop transfer function
step (Tr) ;

end

title('Step Response Comparison');

legend ('Kd=0.001"', 'Kd=0.01"', 'Kd=0.02", 'Kd=0.03") ;
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